




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9 3圆的方程 2 3 知识梳理 考点自测 1 圆的定义及方程 2 点与圆的位置关系圆的标准方程 x a 2 y b 2 r2 点m x0 y0 1 x0 a 2 y0 b 2r2 点在圆上 2 x0 a 2 y0 b 2r2 点在圆外 3 x0 a 2 y0 b 2r2 点在圆内 定点 定长 a b r 4 知识梳理 考点自测 1 圆心在过切点且垂直于切线的直线上 2 圆心在任一弦的垂直平分线上 3 两圆相切时 切点与两圆心三点共线 4 以a x1 y1 b x2 y2 为直径的两端点的圆的方程是 x x1 x x2 y y1 y y2 0 公式推导 设圆上任一点p x y 则有kpa kpb 1 由斜率公式代入整理即可 5 知识梳理 考点自测 1 判断下列结论是否正确 正确的画 错误的画 1 已知圆的方程为x2 y2 2y 0 过点a 1 2 作该圆的切线只有一条 2 方程 x a 2 y b 2 t2 t r 表示圆心为 a b 半径为t的一个圆 4 已知点a x1 y1 b x2 y2 则以ab为直径的圆的方程是 x x1 x x2 y y1 y y2 0 5 方程x2 bxy y2 dx ey f 0表示圆的充要条件是b 0 d2 e2 4f 0 6 知识梳理 考点自测 2 圆心在y轴上 半径为1 且过点 1 2 的圆的方程为 a x2 y 2 2 1b x2 y 2 2 1c x 1 2 y 3 2 1d x2 y 3 2 1 a 7 知识梳理 考点自测 b 8 知识梳理 考点自测 4 若曲线c x2 y2 2ax 4ay 5a2 4 0上所有的点均在第二象限内 则a的取值范围为 a 2 b 1 c 1 d 2 d 解析 曲线c的方程可以化为 x a 2 y 2a 2 4 则该方程表示圆心为 a 2a 半径等于2的圆 因为圆上的点均在第二象限 所以a 2 5 2017湖南邵阳一模 文14 已知a 1 4 b 3 2 以ab为直径的圆的标准方程为 x 1 2 y 1 2 13 解析 以ab为直径的圆的方程为 x 1 x 3 y 4 y 2 0 整理得 x 1 2 y 1 2 13 9 考点一 考点二 考点三 求圆的方程例1 1 已知圆c与直线x y 0及x y 4 0都相切 圆心在直线x y 0上 则圆c的方程为 a x 1 2 y 1 2 2b x 1 2 y 1 2 2c x 1 2 y 1 2 2d x 1 2 y 1 2 2 2 过三点a 1 3 b 4 2 c 1 7 的圆交y轴于m n两点 则 mn b c 10 考点一 考点二 考点三 11 考点一 考点二 考点三 12 考点一 考点二 考点三 思考求圆的方程有哪些常见方法 解题心得求圆的方程时 应根据条件选用合适的圆的方程 一般来说 求圆的方程有两种方法 1 几何法 通过研究圆的性质进而求出圆的基本量 确定圆的方程时 常用到的圆的三个性质 圆心在过切点且垂直切线的直线上 圆心在任一弦的垂直平分线上 两圆内切或外切时 切点与两圆圆心共线 2 代数法 即设出圆的方程 用待定系数法求解 13 考点一 考点二 考点三 对点训练1 1 过点a 4 1 的圆c与直线x y 1 0相切于点b 2 1 则圆c的方程为 2 经过点a 5 2 b 3 2 且圆心在直线2x y 3 0上的圆的方程为 x 3 2 y2 2 x 2 2 y 1 2 10 14 考点一 考点二 考点三 15 考点一 考点二 考点三 16 考点一 考点二 考点三 与圆有关的轨迹问题例2已知圆x2 y2 4上一定点a 2 0 b 1 1 为圆内一点 p q为圆上的动点 1 求线段ap中点的轨迹方程 2 若 pbq 90 求线段pq中点的轨迹方程 17 考点一 考点二 考点三 解 1 设ap的中点为m x y 由中点坐标公式可知 点p的坐标为 2x 2 2y 因为点p在圆x2 y2 4上 所以 2x 2 2 2y 2 4 即 x 1 2 y2 1 故线段ap中点的轨迹方程为 x 1 2 y2 1 2 设pq的中点为n x y 在rt pbq中 pn bn 设o为坐标原点 连接on 则on pq 所以 op 2 on 2 pn 2 on 2 bn 2 所以x2 y2 x 1 2 y 1 2 4 故线段pq中点的轨迹方程为x2 y2 x y 1 0 18 考点一 考点二 考点三 思考求与圆有关的轨迹方程都有哪些常用方法 解题心得1 求与圆有关的轨迹问题时 根据题设条件的不同常采用以下方法 1 直接法 直接根据题目提供的条件列出方程 2 定义法 根据圆 直线等定义列方程 3 几何法 利用圆的几何性质列方程 4 代入法 找到要求点与已知点的关系 代入已知点满足的关系式等 2 求与圆有关的轨迹问题时 题目的设问有两种常见形式 作答也应不同 若求轨迹方程 则把方程求出化简即可 若求轨迹 则必须根据轨迹方程 指出轨迹是什么曲线 19 考点一 考点二 考点三 对点训练2已知点a 1 0 点b 2 0 动点c满足 ac ab 则点c与点p 1 4 所连线段的中点m的轨迹方程为 20 考点一 考点二 考点三 与圆有关的最值问题 多考向 考向1斜率型最值问题例3已知实数x y满足方程x2 y2 4x 1 0 求的最大值和最小值 21 考点一 考点二 考点三 考向2截距型最值问题例4在例3的条件下求y x的最大值和最小值 思考如何求解形如ax by的最值问题 22 考点一 考点二 考点三 考向3距离型最值问题例5在例3的条件下求x2 y2的最大值和最小值 解如图所示 x2 y2表示圆上的一点与原点距离的平方 由平面几何知识知 在原点和圆心连线与圆的两个交点处取得最大值和最小值 23 考点一 考点二 考点三 思考如何求解形如 x a 2 y b 2的最值问题 24 考点一 考点二 考点三 考向4建立目标函数求最值问题例6设圆x2 y2 2的切线l与x轴正半轴 y轴正半轴分别交于点a b 当 ab 取最小值时 切线l的方程为 x y 2 0 25 考点一 考点二 考点三 思考如何借助圆的几何性质求有关线段长的最值 解题心得求解与圆有关的最值问题的两大规律 1 借助几何性质求最值 形如的最值问题 可转化为定点 a b 与圆上的动点 x y 的斜率的最值问题 形如t ax by的最值问题 可转化为动直线的截距的最值问题 形如u x a 2 y b 2的最值问题 可转化为动点到定点的距离的平方的最值问题 2 建立函数关系式求最值根据题目条件列出关于所求目标式子的函数关系式 然后根据关系式的特征选用参数法 配方法 判别式法等求解 其中利用基本不等式求最值是比较常用的方法 26 考点一 考点二 考点三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年江苏苏州工学院面向海内外诚聘英才模拟试卷及答案详解(各地真题)
- 2025贵州金丽农业旅游产业发展集团有限公司考前自测高频考点模拟试题及答案详解(易错题)
- 2025年宁东镇公开招聘公益性岗位人员考前自测高频考点模拟试题及答案详解(典优)
- 2025广西崇左凭祥市发展和改革局公开招聘1人考前自测高频考点模拟试题及1套完整答案详解
- 2025黑龙江黑河市逊克县乡村医生公开招聘19人考前自测高频考点模拟试题及参考答案详解
- 2025年黑河市公安局面向社会公开招聘22名警务辅助人员模拟试卷及答案详解1套
- 矿区动态安全成像分析-洞察与解读
- 商业空调采购安装合同
- 2025年中国春节门窗装饰品行业市场分析及投资价值评估前景预测报告
- 2025江西国控吉成物业管理有限公司招聘1人模拟试卷含答案详解
- 2025年安徽萧县县直事业单位招聘115人笔试备考题库附答案详解
- 风险分级管控和隐患排查治理体系培训考试试题(附答案)
- 新质生产力区域经济发展
- 质量信得过班组知识培训课件
- 手术部(室)医院感染控制标准WST855-2025解读课件
- 2026年高考数学一轮复习三维设计创新-微拓展 圆锥曲线中的二级结论
- 2025中央八项规定精神学习教育知识测试竞赛试卷题库及答案
- DBJ51-T 184-2021 四川省预成孔植桩技术标准
- 科技创新园区租赁合同样本
- 销售工作三年规划
- DB21T 2468-2015 新城疫免疫抗体监测技术规范
评论
0/150
提交评论