高考数学总复习 8.6 热点专题——立体几何中的热点问题课件 文 新人教B版.ppt_第1页
高考数学总复习 8.6 热点专题——立体几何中的热点问题课件 文 新人教B版.ppt_第2页
高考数学总复习 8.6 热点专题——立体几何中的热点问题课件 文 新人教B版.ppt_第3页
高考数学总复习 8.6 热点专题——立体几何中的热点问题课件 文 新人教B版.ppt_第4页
高考数学总复习 8.6 热点专题——立体几何中的热点问题课件 文 新人教B版.ppt_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8 6热点专题 立体几何中的热点问题热点一空间几何体的表面积和体积空间几何体的表面积和体积是每年高考的必考内容 高考对它的考查形式由原来的简单套用公式求解 逐渐变为三视图与柱 锥 台 球的综合问题 题型既有选择 填空题 也与空间位置关系的证明相结合出现在解答题中 例1 1 2016 邢台模拟 一个几何体的三视图如图所示 则该几何体的体积是 a 64b 72c 80d 112 答案 b 2 2015 新课标全国卷 如图 四边形abcd为菱形 g为ac与bd的交点 be 平面abcd 方法规律 求锥体的体积时 等体积转化是常用的方法 转化原则是其高易求 底面积在已知几何体的某一面上 求不规则几何体的体积 常用分割或补形的思想 将不规则几何体转化为规则几何体以便于求解 变式训练1 2016 辽宁大连双基检测 如图 四棱锥p abcd中 底面abcd是边长为3的菱形 abc 60 pa 平面abcd 且pa 3 e为pd的中点 f在棱pa上 且af 1 1 求证 ce 平面bdf 2 求三棱锥p bdf的体积 解析 1 证明取pf的中点g 连接eg cg 连接ac交bd于o 连接fo 由题意可得f为ag的中点 o为ac的中点 fo gc 因为g为pf的中点 e为pd的中点 ge fd 又ge gc g ge gc 平面gec fo fd f fo fd 平面fod 平面gec 平面fod ce 平面gec ce 平面bdf 热点二平行关系与垂直关系的综合问题空间中直线与平面的位置关系是研究立体几何的核心问题 高考始终把直线与平面的平行 垂直关系作为考查的重点 尤其是以多面体 主要是柱体和锥体 为载体的线面位置关系的论证是每年高考的必考内容 例2 如图 在三棱柱abc a1b1c1中 侧棱垂直于底面 ab bc aa1 ac 2 bc 1 e f分别是a1c1 bc的中点 1 求证 平面abe 平面b1bcc1 2 求证 c1f 平面abe 3 求三棱锥e abc的体积 解析 1 证明在三棱柱abc a1b1c1中 bb1 底面abc 所以bb1 ab 又因为ab bc bb1 bc b 所以ab 平面b1bcc1 又ab 平面abe 所以平面abe 平面b1bcc1 方法规律 1 线面 面面位置关系的证明问题实质是线线 线面 面面位置关系的相互转化 交替使用平行 垂直的判定定理和性质定理进行证明 2 线线位置关系是基础 解题时注意 平面几何中位置关系的转化 如 中位线 等腰三角形的中线 平行线分线段成比例等 数量关系与位置关系的转化 如通过计算得到线线垂直等 变式训练2 2015 浙江 如图 在三棱柱abc a1b1c1中 bac 90 ab ac 2 a1a 4 a1在底面abc的射影为bc的中点 d是b1c1的中点 1 证明 a1d 平面a1bc 2 求直线a1b和平面bb1c1c所成的角的正弦值 解析 1 证明设e为bc的中点 由题意得a1e 平面abc 所以a1e ae 因为ab ac 所以ae bc 故ae 平面a1bc 由d e分别为b1c1 bc的中点 得de b1b且de b1b 从而de a1a且de a1a 所以aa1de为平行四边形 于是a1d ae 又因为ae 平面a1bc 所以a1d 平面a1bc 2 作a1f de 垂足为f 连接bf 热点三平面图形翻折问题将平面图形沿其中一条或几条线段折起 使其成为空间图形 这类问题称为平面图形翻折问题 常与空间中的平行 垂直关系以及空间几何体的体积的求法相综合命题 方法规律 平面图形的翻折问题 关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况 一般地 翻折后还在同一个平面上的性质不发生变化 不在同一个平面上的性质发生变化 变式训练3 如图1 在边长为4的菱形abcd中 dab 60 点e f分别在边cd cb上 点e与点c d不重合 ef ac ef ac o 沿ef将 cef翻折到 pef的位置 使平面pef 平面abfed 如图2所示 1 求证 bd 平面poa 2 当pb取得最小值时 求四棱锥p bdef的体积 解析 1 证明因为菱形abcd的对角线互相垂直 所以bd ac 所以bd ao 因为ef ac 所以po ef 因为平面pef 平面abfed 平面pef 平面abfed ef 且po 平面pef 所以po 平面abfed 因为bd 平面abfed 所以po bd 热点四线面位置关系中的存在性问题此类探索性问题是近几年在高考中常出现的问题 主要有两类问题 1 探索条件 即探索能使结论成立的条件是什么 2 探索结论 即在给定的条件下 命题的结论是什么 例4 在如图所示的多面体中 四边形abb1a1和acc1a1都为矩形 1 若ac bc 证明 直线bc 平面acc1a1 2 设d e分别是线段bc cc1的中点 在线段ab上是否存在一点m 使直线de 平面a1mc 请证明你的结论 解析 1 证明因为四边形abb1a1和acc1a1都是矩形 所以aa1 ab aa1 ac 因为ab ac为平面abc内两条相交直线 所以aa1 平面abc 因为直线bc 平面abc 所以aa1 bc 又由已知 ac bc aa1 ac为平面acc1a1内两条相交直线 所以bc 平面acc1a1 2 取线段ab的中点m 连接a1m mc a1c ac1 设o为a1c ac1的交点 由已知 o为ac1的中点 方法规律 对于线面关系中的存在性问题 首先假设存在 然后在这假设条件下 利用线面关系的相关定理 性质进行推理论证 寻找假设满足的条件 若满足则肯定假设 若得出矛盾的结论则否定假设 变式训练4 如图 在正方体abcd a b c d 中 e f分别是棱bc cd的中点 g为棱cc 上的动点 解析 1 证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论