




已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
习题课 抛物线方程及性质的综合应用 一 二 一 利用抛物线的定义解题若抛物线的焦点为f 准线为l 点p在抛物线上 则点p到点f的距离等于点p到准线l的距离 一 二 二 抛物线的焦半径与焦点弦1 抛物线的焦半径抛物线上的点到焦点的距离叫做焦半径 其长度如下 一 二 2 抛物线的焦点弦过焦点的直线与抛物线相交所得的弦叫做焦点弦 若抛物线y2 2px p 0 的焦点弦的端点a x1 y1 b x2 y2 则有以下结论 1 ab x1 x2 p 2 ab 2x0 p x0是a b两点横坐标的中点值 3 ab垂直于对称轴时 ab叫通径 焦点弦中通径最短 6 以ab为直径的圆必与准线相切 一 二 做一做1 抛物线y2 8x上一点p到x轴距离为12 则点p到抛物线焦点f的距离为 a 20b 8c 22d 24 答案 a 解析 抛物线标准方程为y2 6x 2p 6 故通径的长度等于6 答案 c 一 二 做一做3 过抛物线y2 8x的焦点 作倾斜角为45 的直线 则它被抛物线截得的弦长为 a 8b 16c 32d 61解析 由抛物线y2 8x的焦点为 2 0 得直线的方程为y x 2 代入y2 8x 得 x 2 2 8x 即x2 12x 4 0 所以x1 x2 12 弦长为x1 x2 p 12 4 16 答案 b 做一做4 若抛物线y2 16x上一点p到准线的距离等于它到顶点的距离 则点p的坐标为 解析 根据抛物线的定义可知 点p到焦点f的距离等于它到顶点o的距离 因此点p在线段of的垂直平分线上 而f 4 0 所以p点横坐标为 2 代入抛物线方程得y 4 故点p的坐标为 2 4 答案 2 4 一 二 做一做5 已知抛物线x2 4y 经过其焦点f的直线与抛物线相交于a x1 y1 b x2 y2 两点 求证 y1y2为定值 证明 抛物线x2 4y的焦点f 0 1 设直线ab的斜率为k 则其方程为y 1 kx 探究一 探究二 规范解答 利用抛物线的定义解决问题 例1 已知抛物线关于x轴对称 它的顶点在坐标原点o 且经过点m 2 y0 若点m到焦点的距离为3 则 om 等于 答案 b反思感悟利用抛物线的定义解题 其实质是利用抛物线的定义 进行了两种距离之间的一种转化 即抛物线上的点到焦点的距离与到准线的距离之间的转化 通过这种转化 可以简化解题过程 探究一 探究二 规范解答 变式训练1在抛物线y2 12x上 与焦点的距离等于9的点的坐标是 解析 抛物线的焦点为f 3 0 准线x 3 抛物线上的点p 探究一 探究二 规范解答 例2 已知抛物线y2 2x的焦点是f 点p是抛物线上的动点 又有点a 3 2 求 pa pf 的最小值 并求出取最小值时点p的坐标 思维点拨 根据抛物线的定义 就是在抛物线上找一点p 使得点p到点a的距离与点p到准线的距离之和最小 然后可借助平面几何知识求解 探究一 探究二 规范解答 解 如图所示 作pn l于点n l为准线 作ab l于点b 则 pa pf pa pn ab 当且仅当点p为ab与抛物线的交点时 等号成立 探究一 探究二 规范解答 反思感悟这类与抛物线有关的最值问题 一般涉及抛物线上的动点到焦点或准线的距离 可利用抛物线的定义 即抛物线上的点到准线的距离等于该点到焦点的距离 构造出 两点间线段最短 或 点到直线的垂线段最短 使问题获解 探究一 探究二 规范解答 变式训练2定点m与抛物线y2 2x上的点p之间的距离为d1 点p到抛物线准线l的距离为d2 则d1 d2取最小值时 点p的坐标为 探究一 探究二 规范解答 解析 如图所示 连接pf 则d1 d2 pm pf mf 知d1 d2最小值是 mf 当且仅当点p在线段mf上时 等号成立 而直线mf的方程 答案 c 探究一 探究二 规范解答 抛物线的焦点弦问题 例3 已知抛物线方程为y2 2px p 0 过此抛物线的焦点f的直线与抛物线交于a b两点 且 ab p 求ab所在直线的方程 思维点拨 依题意只需求出直线ab的斜率即可利用点斜式求得方程 可根据焦点弦长度公式求解 探究一 探究二 规范解答 探究一 探究二 规范解答 方法二 探究一 探究二 规范解答 反思感悟求抛物线的焦点弦长度的两种方法 一是运用一般的弦长公式 二是直接利用焦点弦长度公式 即如果ab是抛物线y2 2px p 0 的一条过焦点f的弦 a x1 y1 b x2 y2 则弦长 ab af bf x1 x2 p 这种方法的实质是利用焦半径 把点点距转化为点线距 点到准线的距离 解决 这体现了抛物线的定义的重要应用 探究一 探究二 规范解答 变式训练3设抛物线c y2 4x f为c的焦点 过f的直线l与c相交于a b两点 1 设l的斜率为2 求 ab 的大小 解 1 依题意得f 1 0 所以直线l的方程为y 2 x 1 设直线l与抛物线的交点a x1 y1 b x2 y2 所以 ab af bf x1 x2 p 3 2 5 探究一 探究二 规范解答 2 证明 设直线l的方程为x ky 1 设直线l与抛物线的交点a x1 y1 b x2 y2 ky1 1 ky2 1 y1y2 k2y1y2 k y1 y2 1 y1y2 4k2 4k2 1 4 3 探究一 探究二 规范解答 抛物线中的定点与定值问题 典例 如图 过抛物线y2 x上一点a 4 2 作倾斜角互补的两条直线ab ac交抛物线于b c两点 求证 直线bc的斜率是定值 审题策略 欲证明直线bc的斜率为定值 可写出直线bc的方程 然后说明其斜率为定值 或直接用k0 写出斜率 然后说明k0的值与参数无关 而已知直线ab ac过定点 ab与ac两直线倾斜角互补 故两直线方程可用同一参数 直线ab的斜率k 来表示 探究一 探究二 规范解答 规范展示 设直线ab的斜率为k k 0 因为直线ab ac的倾斜角互补 所以直线ac的斜率为 k k 0 又直线ab的方程是y k x 4 2 消去y整理得 k2x2 8k2 4k 1 x 16k2 16k 4 0 因为a 4 2 b xb yb 是上述方程组的解 探究一 探究二 规范解答 故直线bc的斜率为定值 探究一 探究二 规范解答 答题模板 第1步 由已知条件寻求直线ab ac斜率之间的关系 第2步 写出ab的方程并与抛物线方程联立 利用根与系数的关系求得点b的横坐标 第3步 根据ab ac斜率之间的关系 写出点c的横坐标 第4步 利用两点连线的斜率公式写出直线bc的斜率 整理得到结果 第5步 得出结论 探究一 探究二 规范解答 失误警示通过阅卷统计分析 发现造成失分的原因主要如下 1 不能根据ab与ac两直线倾斜角互补 得出其斜率互为相反数 从而无法用一个参数设出直线方程 2 直线方程与抛物线方程联立后 不能利用根与系数的关系正确地求得点b的坐标 3 考虑不到利用ab与ac的斜率互为相反数来写出点c坐标 4 化简整理出现错误 探究一 探究二 规范解答 变式训练已知抛物线y2 8x的顶点为o 点a b在抛物线上 且oa ob 求证 直线ab经过一个定点 因此直线ab经过定点 8 0 12345 1 抛物线y2 mx的焦点为f 点p 2 2 在此抛物线上 m为线段pf的中点 则点m到该抛物线准线的距离为 答案 d 12345 答案 b 12345 3 过抛物线y2 4x的焦点作直线交抛物线于a x1 y1 b x2 y2 两点 若x1 x2 6 则 ab 解析 ab x1 x2 p 6 2 8 答案 8 1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030工业废水处理技术创新与环保产业投资机会报告
- 2025-2030工业大数据隐私计算应用分析报告
- 2025-2030工业大数据分析平台功能演进与垂直行业解决方案报告
- 语文申请书例题
- 带饭申请书模板
- 安全模块培训记录内容课件
- 公司旅游申请书
- 休学心理评估申请书
- 困难员工转岗申请书
- 延迟公示申请书
- 向上级招反诈技术人员的申请
- 《玻璃纤维湿法制品》课件
- DB63T 2374-2024 微型消防站建设管理
- 新版质量管理体系标准之组织的知识
- 符号学角度分析设计案例
- 指南解读肾癌治疗方案
- 《电气基础知识培训》课件
- 职业技术学院《财务大数据分析》课程标准
- 大数据分析方法与应用 课件全套 耿秀丽 第1-9章 大数据概述-神经网络
- 2024公安机关人民警察高级执法资格考试题(解析版)
- 质量为纲-华为公司质量理念与实践
评论
0/150
提交评论