高等数学教案3-5.DOC.doc_第1页
高等数学教案3-5.DOC.doc_第2页
高等数学教案3-5.DOC.doc_第3页
高等数学教案3-5.DOC.doc_第4页
高等数学教案3-5.DOC.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

32 洛必达法则 3. 5 函数的极值与最大值最小值 一、函数的极值及其求法 极值的定义: 定义 设函数f(x)在区间(a, b)内有定义, x0(a, b). 如果在x0的某一去心邻域内有f(x)f(x0), 则称f(x0)是函数f(x)的一个极小值. 设函数f(x)在点x0的某邻域U(x0)内有定义, 如果在去心邻域U(x0)内有f(x)f(x0), 则称f(x0)是函数 f(x)的一个极大值(或极小值). 函数的极大值与极小值统称为函数的极值, 使函数取得极值的点称为极值点. 函数的极大值和极小值概念是局部性的. 如果f(x0)是函数f(x)的一个极大值, 那只是就x0 附近的一个局部范围来说, f(x0)是f(x)的一个最大值; 如果就f(x)的整个定义域来说, f(x0)不一定是最大值. 关于极小值也类似. 极值与水平切线的关系: 在函数取得极值处, 曲线上的切线是水平的. 但曲线上有水平切线的地方, 函数不一定取得极值. 定理1 (必要条件)设函数f(x)在点x0 处可导, 且在x0 处取得极值, 那么这函数在x0 处的导数为零, 即f (x0)=0. 证 为确定起见, 假定f(x0)是极大值(极小值的情形可类似地证明). 根据极大值的定义, 在x0 的某个去心邻域内, 对于任何点x , f(x) f(x0)均成立. 于是 当x x0 时, 因此 ; 从而得到 f (x0) = 0 . 简要证明: 假定f(x0)是极大值. 根据极大值的定义, 在x0的某个去心邻域内有f(x)0, 在x0的某一右邻域内f (x)0, 那么函数f(x)在x0处取得极大值; (2) 如果在x0的某一左邻域内f (x)0, 那么函数f(x)在x0处取得极小值; (3)如果在x0的某一邻域内f (x)不改变符号, 那么函数f(x)在x0处没有极值. 定理 (第一种充分条件)设函数f(x)在含x0的区间(a, b)内连续, 在(a, x0)及(x0, b)内可导. (1)如果在(a, x0)内f (x)0, 在(x0, b)内f (x)0, 那么函数f(x)在x0处取得极大值; (2)如果在(a, x0)内f (x)0, 那么函数f(x)在x0处取得极小值; (3)如果在(a, x0)及(x0, b)内 f (x)的符号相同, 那么函数f(x)在x0处没有极值. 定理2(第一充分条件)设函数f(x)在x0连续, 且在x0的某去心邻域(x0-d, x0)(x0, x0+d)内可导. (1)如果在(x0-d, x0)内f (x)0, 在(x0, x0+d)内f (x)0, 那么函数f(x)在x0处取得极大值; (2)如果在(x0-d, x0)内f (x)0, 那么函数f(x)在x0处取得极小值; (3)如果在(x0-d, x0)及(x0, x0+d)内 f (x)的符号相同, 那么函数f(x)在x0处没有极值. 定理2也可简单地这样说: 当x在x0的邻近渐增地经过x0时, 如果f (x)的符号由负变正, 那么f(x)在x0处取得极大值; 如果f (x)的符号由正变负, 那么f(x)在x0处取得极小值; 如果f (x)的符号并不改变, 那么f(x)在x0处没有极值 (注: 定理的叙述与教材有所不同) . 确定极值点和极值的步骤: (1)求出导数f (x); (2)求出f(x)的全部驻点和不可导点; (3)列表判断(考察f (x)的符号在每个驻点和不可导点的左右邻近的情况, 以便确定该点是否是极值点, 如果是极值点, 还要按定理2确定对应的函数值是极大值还是极小值); (4)确定出函数的所有极值点和极值. 例1求函数的极值. 解(1)f(x)在(-, +)内连续, 除x=-1外处处可导, 且 ; (2)令f (x)=0, 得驻点x=1; x=-1为f(x)的不可导点; (3)列表判断 x(-, -1)-1(-1, 1)1(1, +)f (x)+不可导-0+f(x)0 (4)极大值为f(-1)=0, 极小值为. 定理3 (第二种充分条件) 设函数f(x)在点x0处具有二阶导数且f (x0)=0, f (x0)0, 那么 (1)当f (x0)0时, 函数f(x)在x0处取得极小值; 证明 在情形(1), 由于f (x0)0, 按二阶导数的定义有. 根据函数极限的局部保号性, 当x 在x0的足够小的去心邻域内时, . 但f (x0)=0, 所以上式即. 从而知道, 对于这去心邻域内的x来说, f (x)与x-x0符号相反. 因此, 当x-x00即x0; 当x-x00即xx0时, f (x)0. 根据定理2, f(x)在点x0处取得极大值. 类似地可以证明情形(2). 简要证明: 在情形(1), 由于f (x0)0, f (x0)=0, 按二阶导数的定义有 .根据函数极限的局部保号性, 在x0的某一去心邻域内有 . 从而在该邻域内, 当x0; 当xx0时, f (x)0. 根据定理2, f(x)在点x0处取得极大值. 定理3 表明, 如果函数f(x)在驻点x0处的二导数f (x0) 0, 那么该点x0一定是极值点, 并且可以按二阶导数f (x0)的符来判定f(x0)是极大值还是极小值. 但如果f (x0)=0, 定理3就不能应用. 讨论: 函数f (x)=-x4, g(x)=x3在点x=0是否有极值? 提示: f (x)=4x 3, f (0)=0; f (x)=12x2, f (0)=0. 但当x0时f (x)0时f (x)0, 所以f(0) 为极小值. g (x)=3x2, g (0)=0; g (x)=6x, g (0)=0. 但g(0)不是极值 例2 求函数f(x)=(x2-1)3+1的极值. 解 (1)f (x)=6x(x2-1)2. (2)令f (x)=0, 求得驻点x1=-1, x2=0, x3=1. (3)f (x)=6(x2-1)(5x2-1). (4)因f (0)=60, 所以f (x)在x=0处取得极小值, 极小值为f(0)=0. (5)因f (-1)=f (1)=0, 用定理3无法判别. 因为在-1的左右邻域内f (x)0, 所以f(x)在-1处没有极值; 同理, f(x)在1处也没有极值. 二、最大值最小值问题 在工农业生产、工程技术及科学实验中, 常常会遇到这样一类问题: 在一定条件下, 怎样使“产品最多”、“用料最省”、“成本最低”、“效率最高”等问题, 这类问题在数学上有时可归结为求某一函数(通常称为目标函数)的最大值或最小值问题. 极值与最值的关系: 设函数f(x)在闭区间a, b上连续, 则函数的最大值和最小值一定存在. 函数的最大值和最小值有可能在区间的端点取得, 如果最大值不在区间的端点取得, 则必在开区间(a, b)内取得, 在这种情况下, 最大值一定是函数的极大值. 因此, 函数在闭区间a, b上的最大值一定是函数的所有极大值和函数在区间端点的函数值中最大者. 同理, 函数在闭区间a, b上的最小值一定是函数的所有极小值和函数在区间端点的函数值中最小者. 最大值和最小值的求法: 设f(x)在(a, b)内的驻点和不可导点(它们是可能的极值点)为x1, x2, , xn, 则比较 f(a), f(x 1), , f(x n), f(b)的大小, 其中最大的便是函数f(x)在a, b上的最大值, 最小的便是函数f(x)在a, b上的最小值. 例3求函数f(x)=|x2-3x+2|在-3, 4上的最大值与最小值. 解 , 在(-3, 4)内, f(x)的驻点为; 不可导点为x=1和x=2. 由于f(-3)=20, f(1)=0, f(2)=0, f(4)=6, 比较可得f(x)在x=-3处取得它在-3, 4上的最大值20, 在x=1和x=2处取它在-3, 4上的最小值0. 例4 工厂铁路线上AB段的距离为100km. 工厂C距A处为20km, AC垂直于AB. 为了运输需要, 要在AB线上选定一点D向工厂修筑一条公路. 已知铁路每公里货运的运费与公路上每公里货运的运费之比3:5. 为了使货物从供应站B运到工厂C的运费最省, 问D点应选在何处? 解 设AD=x (km), 则 DB=100-x , . 设从B点到C点需要的总运费为y, 那么 y=5kCD+3kDB (k是某个正数), 即 +3k(100-x) (0x100). 现在, 问题就归结为: x 在0, 100内取何值时目标函数y的值最小. 先求y对x的导数: . 解方程y=0, 得x=15(km). 由于y|x=0=400k, y|x=15=380k, 其中以y|x=15=380k为最小, 因此当AD=x=15km时, 总运费为最省. 例2 工厂C与铁路线的垂直距离AC为20km, A点到火车站B的距离为100km. 欲修一条从工厂到铁路的公路CD. 已知铁路与公路每公里运费之比为3:5. 为了使火车站B与工厂C间的运费最省, 问D点应选在何处? 解 设AD=x (km), B与C间的运费为y, 则 y=5kCD+3kDB (0x100), 其中k是某一正数. 由=0, 得x=15. 由于y|x=0=400k, y|x=15=380k, 其中以y|x=15=380k为最小, 因此当AD=x=15km时, 总运费为最省. 注意: f(x)在一个区间(有限或无限, 开或闭)内可导且只有一个驻点x0 , 并且这个驻点x0 是函数f(x)的极值点, 那么, 当f(x0)是极大值时, f(x0)就是f(x)在该区间上的最大值; 当f(x0)是极小值时, f(x0)就是f(x)在该区间上的最小值. f(x 0) Oa x 0 b x y=f(x ) y f(x 0) Oa x 0 b x y=f(x ) y 应当指出, 实际问题中, 往往根据问题的性质就可以断定函数f(x)确有最大值或最小值, 而且一定在定义区间内部取得. 这时如果f(x)在定义区间内部只有一个驻点x0, 那么不必讨论f(x0)是否是极值, 就可以断定f(x0)是最大值或最小值. d hb 例6 把一根直径为d 的圆木锯成截面为矩形的梁. 问矩形截面的高h和宽b应如何选择才能使梁的抗弯截面模量W ()最大? 解 b 与h 有下面的关系: h 2=d 2-b 2, 因而 (0bd). 这样, W就是自变量b的函数, b的变化范围是(0, d). 现在, 问题化为: b等于多

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论