




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.2合并同类项同步练习一选择题(共3小题)1如果单项式2x2y2n+2与3y2nx2是同类项那么n等于()A0B1C1D22下列各组式中是同类项的为()A4x3y与2xy3B4yx与7xyC9xy与3x2Dab与bc3下列算式中,正确的是()A2x+2y=4xyB2a2+2a3=2a5C4a23a2=1D2ba2+a2b=a2b二填空题(共6小题)4计算:3a2a=5单项式a2x+1b3与8ax+3b3是同类项,则x=6计算:2xy23xy2=7计算:3a+2a=8若a2n+1b2与5a3n2b2是同类项,则n=9已知单项式3amb2与a4bn1的和是单项式,那么m=,n=三解答题(共6小题)10如果单项式5mxay与5nx2a3y是关于x、y的单项式,且它们是同类项求(1)(7a22)2013的值;(2)若5mxay5nx2a3y=0,且xy0,求(5m5n)2014的值11若2x2y2b+3与xa+1y是同类项,求a,b的值12(1)计算:7+(203)(2)化简:3a2b+4c2a6c+b13已知 4x2my3+n与3x6y2是同类项,求多项式0.3m2nmn2+0.4n2mm2n+nm2的值14计算:(1)3xy4xy(2xy)(2)(3)22()+4+22()155yx2+4xy22xy+6x2y+2xy+54.2合并同类项同步练习一选择题(共3小题)1(2017春漳州月考)如果单项式2x2y2n+2与3y2nx2是同类项那么n等于()A0B1C1D2【分析】两个单项式是同类项,根据同类项的定义,列方程2n+2=2n,解方程即可求得n的值【解答】解:单项式2x2y2n+2与3y2nx2是同类项,2n+2=2n,解得n=0,故选A【点评】本题是对同类项定义的考查,同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,所以只要判断所含有的字母是否相同,相同字母的指数是否相同即可2(2017春新泰市校级月考)下列各组式中是同类项的为()A4x3y与2xy3B4yx与7xyC9xy与3x2Dab与bc【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案【解答】解;A、相同字母的指数不是同类项,故A错误;B、字母相同且相同字母的指数也相同,故B正确;C、字母不同不是同类项,故C错误;D、字母不同不是同类项,故D错误;故选:B【点评】本题考查了同类项,字母相同、相同字母的指数相同是解题关键3(2017春萧山区月考)下列算式中,正确的是()A2x+2y=4xyB2a2+2a3=2a5C4a23a2=1D2ba2+a2b=a2b【分析】根据合并同类项法则即可求出答案【解答】解:(A)2x与2y不是同类项,故A错误;(B)2a2与2a3不是同类项,故B错误;(C)4a23a2=a2,故C错误;故选(D)【点评】本题考查合并同类项的法则,解题的关键是根据合并同类项的法则进行判断,注意同类项与字母的顺序无关二填空题(共6小题)4(2016梧州)计算:3a2a=a【分析】根据同类项与合并同类项法则计算【解答】解:3a2a=(32)a=a【点评】本题考查合并同类项、代数式的化简同类项相加减,只把系数相加减,字母及字母的指数不变5(2017春沂源县校级月考)单项式a2x+1b3与8ax+3b3是同类项,则x=2【分析】同类项是指相同字母的指数要相等【解答】解:由题意可知:2x+1=x+3,x=2,故答案为:2【点评】本题考查同类项的概念,解题的关键是根据同类项的概念列出方程求出x,本题属于基础题型6(2016宁国市一模)计算:2xy23xy2=xy2【分析】直接根据合并同类项的法则运算即可【解答】解:原式=xy2故答案为xy2【点评】本题考查了合并同类项:把多项式中同类项合成一项,叫做合并同类项;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变7(2016商丘模拟)计算:3a+2a=a【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,进行运算即可【解答】解:原式=a故答案为:a【点评】此题考查了同类项的合并,属于基础题,掌握合并同类项的法则是关键8(2016秋卢龙县期末)若a2n+1b2与5a3n2b2是同类项,则n=3【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,从而求得n的值【解答】解:根据同类项的定义,2n+1=3n2,解得n=3【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点9(2016秋雅安期末)已知单项式3amb2与a4bn1的和是单项式,那么m=4,n=3【分析】本题是对同类项定义的考查,同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,只有同类项才可以合并的由同类项的定义可求得m和n的值【解答】解:由同类项定义可知m=4,n1=2,即n=3答:m=4,n=3【点评】只有同类项才可以进行相加减,而判断同类项要一看所含有的字母是否相同,二看相同字母的指数是否相同三解答题(共6小题)10(2016邯山区一模)如果单项式5mxay与5nx2a3y是关于x、y的单项式,且它们是同类项求(1)(7a22)2013的值;(2)若5mxay5nx2a3y=0,且xy0,求(5m5n)2014的值【分析】(1)根据同类项是字母相同且相同字母的指数也相同,可得关于a的方程,解方程,可得答案;(2)根据合并同类项,系数相加字母部分不变,可得m、n的关系,根据0的任何整数次幂都得零,可得答案【解答】解:(1)由单项式5mxay与5nx2a3y是关于x、y的单项式,且它们是同类项,得a=2a3,解得a=3,(7a22)2013=(7322)2013=(1)2013=1;(2)由5mxay5nx2a3y=0,且xy0,得5m5n=0,解得m=n,(5m5n)2014=02014=0【点评】本题考查了同类项,利用了同类项的定义,负数的奇数次幂是负数,零的任何正数次幂都得零11(2016秋饶平县期末)若2x2y2b+3与xa+1y是同类项,求a,b的值【分析】根据同类项的概念即可列出方程求出a与b的值【解答】解:由题意可知:a+1=2,2b+3=b1a=1,2b+3=b16b+9=2b3b=3即a=1,b=3【点评】本题考查同类项的概念,涉及一元一次方程的解法12(2016秋宜春期末)(1)计算:7+(203)(2)化简:3a2b+4c2a6c+b【分析】(1)根据有理数的加减运算即可求出答案(2)根据合并同类项的法则即可求出答案【解答】解:(1)解:原式=7+17=10(2)解:原式=(3a2a)+(2b+b)+(4c6c)=ab2c【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则进行计算,本题属于基础题型13(2016秋徐州期中)已知 4x2my3+n与3x6y2是同类项,求多项式0.3m2nmn2+0.4n2mm2n+nm2的值【分析】根据同类项的概念即可求出m与n的值,然后将原式化简即可求出答案【解答】解:(1)由题意可知:2m=6,3+n=2,m=3,n=1,原式=(0.31+)m2n+(+0.4)mn2=m2n+mn2=32(1)+3(1)2=【点评】本题考查同类项的概念,涉及代入求值,合并同类项等知识14(2016秋天门期末)计算:(1)3xy4xy(2xy)(2)(3)22()+4+22()【分析】(1)根据合并同类项的法则即可求出答案(2)根据有理数运算的法则即可求出答案【解答】解:(1)原式=3xy4xy+2xy=xy,(2)原式=9()+4+4()=4()+46=6+46=8【点评】本题考查学生的计算能力,解题的关键是熟练运用相关运算法则,本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中地理野外实践课程设计与应用论文
- 2024年度河南省二级造价工程师之建设工程造价管理基础知识真题练习试卷B卷附答案
- 小学环保教育实验:厨余堆肥蚯蚓粪对小白菜生长实验观察报告论文
- 中国医药行业用黄原胶行业市场前景预测及投资价值评估分析报告
- 节假日装修管理制度
- 苯乙烯储存管理制度
- 茶艺坊安全管理制度
- 调试组1019题库题库(500道)
- 一年级《古对今》课件
- 财务预算练习题及参考答案
- 【MOOC】《Python语言程序设计》(东北大学)中国大学慕课答案
- 2024年黑龙江省《辅警招聘考试必刷500题》考试题库附答案(满分必刷)
- 2025年广西宏桂集团招聘笔试参考题库含答案解析
- 管道工程图画法基础入门
- 电网智能化运维管理平台建设
- 无处不在-传染病知到智慧树章节测试课后答案2024年秋南昌大学
- 2025年煤矿从业人员安全培训考试题库
- 公司人事管理制度范文(2篇)
- 国家开放大学电大22270资源与运营管理(统设课)期末终考题库参考答案
- 《口腔固定修复工艺技术》期末考试复习题库(含答案)
- 酒店养生药膳培训课件
评论
0/150
提交评论