高考数学二轮复习 专题二 函数与导数 第4讲 导数的热点问题课件 文.ppt_第1页
高考数学二轮复习 专题二 函数与导数 第4讲 导数的热点问题课件 文.ppt_第2页
高考数学二轮复习 专题二 函数与导数 第4讲 导数的热点问题课件 文.ppt_第3页
高考数学二轮复习 专题二 函数与导数 第4讲 导数的热点问题课件 文.ppt_第4页
高考数学二轮复习 专题二 函数与导数 第4讲 导数的热点问题课件 文.ppt_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第4讲导数的热点问题 专题二函数与导数 热点分类突破 真题押题精练 热点一利用导数证明不等式用导数证明不等式是导数的应用之一 可以间接考查用导数判定函数的单调性或求函数的最值 以及构造函数解题的能力 例1 2017届云南省昆明市第一中学月考 设函数f x ax2 lnx 曲线y f x 在x 2处与直线2x 3y 0垂直 1 求函数f x 的单调区间 解答 解函数f x 的定义域为 0 由f x 0 得x 1 由f x 0 得0 x 1 所以函数f x 的单调递增区间为 1 单调递减区间为 0 1 证明 思维升华 令h x ex 1 x 则h x ex 1 1 当x 1时 h x 0 所以h x 在 1 上为增函数 所以g x 0 所以g x 在 1 上为增函数 思维升华用导数证明不等式的方法 1 利用单调性 若f x 在 a b 上是增函数 则 x a b 则f a f x f b 对 x1 x2 a b 且x1 x2 则f x1 f x2 对于减函数有类似结论 2 利用最值 若f x 在某个范围d内有最大值m 或最小值m 则对 x d 有f x m 或f x m 3 证明f x g x 可构造函数f x f x g x 证明f x 0 解答 当00 当x 1时 f x 0 所以f x 在 0 1 上单调递增 在 1 上单调递减 所以f x 在x 1处取得极大值 解答 因为x 1 所以h x 0 则h x 在 1 上单调递增 所以h x 的最小值为h 1 1 0 从而g x 0 故g x 在 1 上单调递增 所以g x 的最小值为g 1 2 所以k3 k 2 即 k 1 k2 k 2 0 解得k 1 故k的取值范围为 1 热点二利用导数讨论方程根的个数方程的根 函数的零点 函数图象与x轴的交点的横坐标是三个等价的概念 解决这类问题可以通过函数的单调性 极值与最值 画出函数图象的走势 通过数形结合思想直观求解 例2 2017届汕头期末 设函数f x x2 a 1 x alnx a 0 1 求函数f x 的单调区间 解答 解函数f x 的定义域为 0 当00 得01 所以函数f x 的单调增区间为 0 a 和 1 单调减区间为 a 1 所以函数f x 的单调增区间为 0 无减区间 当a 1时 令f x 0 得0a 所以函数f x 的单调增区间为 0 1 和 a 单调减区间为 1 a 2 讨论函数f x 的零点个数 解答 思维升华 解由 1 可知 当0 a 1时 函数f x 的单调增区间为 0 a 和 1 单调减区间为 a 1 因为f 2a 2 aln 2a 2 0 所以函数f x 有唯一零点 当a 1时 函数f x 在 0 上单调递增 所以函数f x 有唯一零点 当a 1时 函数f x 的单调递增区间是 0 1 和 a 单调递减区间是 1 a f 2a 2 aln 2a 2 0 综上 函数f x 有唯一零点 思维升华 1 函数y f x k的零点问题 可转化为函数y f x 和直线y k的交点问题 2 研究函数y f x 的值域 不仅要看最值 而且要观察随x值的变化y值的变化趋势 解答 解f x ax2 a 1 x 1 当x变化时 f x f x 的变化情况如下表 解答 2 当a 1时 判断函数f x 在区间 0 2 上零点的个数 当a 0时 f x 在 0 1 上单调递增 在 1 2 上单调递减 所以f x 在 0 2 上有两个零点 f x 在 0 1 上单调递增 在 1 2 上单调递减 所以f x 在 0 2 上有两个零点 所以f x 在 0 1 上有且仅有一个零点 在 1 2 上没有零点 所以f x 在 0 2 上有且仅有一个零点 当a 1时 f x 0恒成立 f x 在 0 2 上单调递增 所以f x 在 0 2 上有且仅有一个零点 热点三利用导数解决生活中的优化问题生活中的实际问题受某些主要变量的制约 解决生活中的优化问题就是把制约问题的主要变量找出来 建立目标问题即关于这个变量的函数 然后通过研究这个函数的性质 从而找到变量在什么情况下可以达到目标最优 例3在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板abcd 然后在矩形纸板的四个角上切去边长相等的小正方形 再把它的边沿虚线折起 做成一个无盖的长方体纸盒 如图 设小正方形边长为x厘米 矩形纸板的两边ab bc的长分别为a厘米和b厘米 其中a b 1 当a 90时 求纸盒侧面积的最大值 解答 解因为矩形纸板abcd的面积为3600平方厘米 故当a 90时 b 40 从而包装盒子的侧面积s 2 x 90 2x 2 x 40 2x 8x2 260 x x 0 20 2 试确定a b x的值 使得纸盒的体积最大 并求出最大值 解答 思维升华 x 3600 240 x 4x2 4x3 240 x2 3600 x 当且仅当a b 60时等号成立 设f x 4x3 240 x2 3600 x x 0 30 则f x 12 x 10 x 30 所以当0 x 10时 f x 0 f x 在 0 10 上单调递增 解包装盒子的体积v a 2x b 2x x 当10 x 30时 f x 0 f x 在 10 30 上单调递减 因此当x 10时 f x 有最大值f 10 16000 此时a b 60 x 10 所以当a b 60 x 10时纸盒的体积最大 最大值为16000立方厘米 思维升华利用导数解决生活中的优化问题的一般步骤 1 建模 分析实际问题中各量之间的关系 列出实际问题的数学模型 写出实际问题中变量之间的函数关系式y f x 2 求导 求函数的导数f x 解方程f x 0 3 求最值 比较函数在区间端点和使f x 0的点的函数值的大小 最大 小 者为最大 小 值 4 作答 回归实际问题作答 跟踪演练3图1是某种称为 凹槽 的机械部件的示意图 图2是凹槽的横截面 阴影部分 示意图 其中四边形abcd是矩形 弧cmd是半圆 凹槽的横截面的周长为4 若凹槽的强度t等于横截面的面积s与边ab的乘积 设ab 2x bc y 解答 1 写出y关于x的函数表达式 并指出x的取值范围 解易知半圆cmd的半径为x 故半圆cmd的弧长为 x 所以4 2x 2y x 解答 2 求当x取何值时 凹槽的强度最大 解依题意 设凹槽的强度为t 横截面的面积为s 则有 真题体验 2017 全国 已知函数f x ae2x a 2 ex x 1 讨论f x 的单调性 解f x 的定义域为 f x 2ae2x a 2 ex 1 aex 1 2ex 1 i 若a 0 则f x 0 则由f x 0 得x lna 当x lna 时 f x 0 所以f x 在 lna 上单调递减 在 lna 上单调递增 解答 2 若f x 有两个零点 求a的取值范围 解答 解 i 若a 0 由 1 知 f x 至多有一个零点 当a 1时 由于f lna 0 故f x 只有一个零点 即f lna 0 故f x 没有零点 又f 2 ae 4 a 2 e 2 2 2e 2 2 0 故f x 在 lna 上有一个零点 因此f x 在 lna 有一个零点 综上 a的取值范围为 0 1 押题预测 解答 押题依据有关导数的综合应用试题多考查导数的几何意义 导数与函数的单调性 导数与不等式等基础知识和基本方法 考查分类整合思想 转化与化归思想等数学思想方法 本题的命制正是根据这个要求进行的 全面考查了考生综合求解问题的能力 押题依据 已知函数f x 2xlnx x2 2ax a2 记g x 为f x 的导函数 1 若曲线y f x 在点 1 f 1 处的切线垂直于直线x y 3 0 求a的值 解由已知 可得函数f x 的定义域为 0 g x 2 x 1 lnx a 所以y f x 在点 1 f 1 处的切线的斜率k g 1 2a 又切线垂直于直线x y 3 0 所以k 1 解答 2 讨论g x 0的解的个数 解由 1 可得g x 2 x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论