




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3 1 1利用同角三角函数的基本关系求值 1 利用单位圆理解关系式 sin2 cos2 1和tan 2 能利用同角三角函数的基本关系解决求值问题 做一做1 下列各项中可能成立的一项是 答案 b答案 2 题型一 题型二 题型三 题型四 反思如果已知三角函数值 且角的终边所在的象限已被指定 那么只有一组解 题型一 题型二 题型三 题型四 题型一 题型二 题型三 题型四 分析先利用cos 0 且cos 1 得出 是第一或第四象限角 然后根据 所在的象限分别求出sin 的值 最后求出tan 的值 题型一 题型二 题型三 题型四 题型一 题型二 题型三 题型四 反思如果已知三角函数值 但没有指定角的终边在哪个象限 那么由已知三角函数值确定角的终边可能在的象限 然后再求解 这种情况一般有两组解 题型一 题型二 题型三 题型四 题型一 题型二 题型三 题型四 例3 已知sin a 求cos 和tan 分析 利用同角三角函数的基本关系求解 注意对a进行分类讨论 解 当 a 1时 此题无解 当a 0时 由sin 0得cos 1 tan 0 当a 1时 由sin 1得cos 0 tan 不存在 当a 1时 由sin 1得cos 0 tan 不存在 题型一 题型二 题型三 题型四 题型一 题型二 题型三 题型四 当 的终边在y轴上时 cos 0 tan 不存在 当 的终边在x轴的非负半轴上时 cos 1 tan 0 当 的终边在x轴的非正半轴上时 cos 1 tan 0 反思如果所给的三角函数值是用字母给出的 且没有指定角的终边在哪个象限 那么就需要对表示该值中字母的正 负进行讨论 另外 还要注意其角的终边有可能落在坐标轴上 题型一 题型二 题型三 题型四 答案 c 题型一 题型二 题型三 题型四 分析由已知求得tan 对所求式子进行恒等变形 凑出tan 代入求值即可 题型一 题型二 题型三 题型四 题型一 题型二 题型三 题型四 反思已知tan 的值 求关于sin cos 的分式值的问题 有以下两种情况 1 若分子 分母中sin cos 的次数相同 称为齐次式 由cos 0 令分子 分母同除以cosn n n 将待求式化为关于tan 的表达式 再整体代入tan 的值求解 2 若待求式形如asin2 bsin cos ccos2 注意可将分母 1 化为sin2 cos2 进一步转化为关于tan 的表达式 然后求值 题型一 题型二 题型三 题型四 1 2 3 4 5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗器械临床试验质量管理规范化与2025年临床试验伦理报告
- 2025年航空航天高精度加工技术在航空航天器零部件制造中的高温合金熔射技术报告
- MondelezInternationalESG行动报告-2022上半年供应链企业公民责任报告
- 智能家居与智慧城市建设竞争地位分析2025年可行性研究报告
- MySQL、SQLServer等主流数据库面试题
- 三农种植知识培训课件
- 女朋友给男朋友的检讨书
- 大班数学教案学习二等分
- 大班下册社会教案
- 大学生自我评价参考
- 私募薪酬管理办法
- 2025年急诊三基考试题库及答案
- 2025贵州航空产业城集团股份有限公司旗下子公司贵州安立航空材料有限公司招聘61人笔试历年参考题库附带答案详解
- 军人休假规定管理办法
- 2025秋人教版英语八年级上Unit 2 全单元听力材料文本及翻译
- DB11-T 1455-2025 电动汽车充电基础设施规划设计标准
- 2025年贵州省中考英语真题含答案
- T/CBMCA 039-2023陶瓷大板岩板装修镶贴应用规范
- 全套教学课件《工程伦理学》
- GB 18613-2020 电动机能效限定值及能效等级
- 高一研究性课题
评论
0/150
提交评论