




免费预览已结束,剩余6页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新定义问题针对演练1. (2015扬州)平面直角坐标系中,点p(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点p(x,y)的横坐标与纵坐标的绝对值之和叫做点p(x,y)的勾股值,记为p,即p|x|+|y|.(其中的“+”是四则运算中的加法)(1)求点a(-1,3),b(+2,-2)的勾股值a,b; (2)点m在反比例函数y=的图象上,且m4,求点m的坐标; ( 3)求满足条件n=3的所有点n围成的图形的面积.2. (2014扬州)对x,y定义一种新运算t,规定:t(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:t(0,1)= =b.(1)已知t(1,-1)=-2,t(4,2)=1. 求a,b的值; 若关于m的不等式组恰好有3个整数解,求实数p的取值范围;(2)若t(x,y)=t(y,x)对任意实数x,y都成立(这里t(x,y)和t(y,x)均有意义),则a,b应满足怎样的关系式? 3. 先阅读下列材料,并解决后面的问题.材料:一般地,n个相同的因数a相乘:记为an,如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若an=b(a0且a1,b0),则n叫做以a为底b的对数,记为:logab(即logab=n).如3481,则4叫做以3为底81的对数,记为log381(即log3814).问题:(1)计算以下各对数的值:log24= ;log216= ;log264= ;(2)观察(1)中三个数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?logam+logan= (a0且a1,m0,n0);(4)根据幂的运算法则:anam=an+m以及对数的含义证明上述结论.4. (2015自贡)观察下表序号123图形x xyx xx x xy yx x xy yx x xx x x xy y yx x x xy y yx x x xy y yx x x x我们把表格中字母和所得的多项式称为特征多项式,例如第1格的“特征多项式”为4xy,回答下列问题:(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n格的“特征多项式”为 .;(2)若第1格的“特征多项式”的值为10,第2格的“特征多项式”的值为-16,求x,y的值;在此条件下,第n格的“特征多项式”是否有最小值?若有,求出最小值和相应的n值;若没有,说明理由.5. (2014兰州)给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将abc绕顶点b按顺时针方向旋转60得到dbe,连接ad,dc,ce,已知dcb=30.求证:bce是等边三角形;求证:dc2+bc2=ac2,即四边形abcd是勾股四边形.第5题图6. 阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,小红得出命题:“等边三角形一定是奇异三角形”,请判断小红提出的命题是否正确,并填空 (填“正确”或“不正确”);若某三角形的三边长分别是2、4、,则abc是奇异三角形吗? (填“是”或“不是”);(2)若rtabc是奇异三角形,且其两边长分别为2、2,则第三边的边长为 ;且此直角三角形的三边之比为 (请按从小到大排列);在rtabc中,acb=90,ab=c,ac=b,bc=a,且ba,若rtabc是奇异三角形,求abc;(3)在rtabc中,acb=90,以ab为斜边作等腰直角三角形abd,点e是ac上方的一点,且满足ae=ad,ce=cb.求证:ace是奇异三角形.7. 阅读材料:关于三角函数还有如下的公式:sin()=sincoscossintan()= 利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan15=tan(45-30)=2-.根据以上阅读材料,请选择适当的公式解答下面问题:(1)计算:sin15;(2)乌蒙铁塔是六盘水市标志性建筑物之一(图),小华想用所学知识来测量该铁塔的高度,如图,小华站在离塔底a距离7米的c处,测得塔顶b的仰角为75,小华的眼睛离地面的距离dc为1.62米,请帮助小华求出乌蒙铁塔的高度.(精确到0.1米,参考数据1.732, 1.414) 第7题图8. 对于非负实数x“四舍五入”到个位的值记为x,即:当n为非负整数时,如果n-xn+,则x=n.如:0=0.46=0,0.64=1.49=1,3.5=4.28=4,,试解决下列问题:(1)填空:= (为圆周率); 如果2x-1=3,则实数x的取值范围为 ;(2)试举例说明:当x= ,y= 时,x+y=x+y不恒成立;(3)求满足x=x的所有非负实数x的值.9. 在平面直角坐标系xoy中,对于任意两点p1(x1,y1)与p2(x2,y2)的“非常距离”,给出如下定义:若|x1-x2|y1-y2|,则点p1与点p2的“非常距离”为|x1-x2|;若|x1-x2|y1-y2|,则点p1与点p2的“非常距离”为|y1-y2|.例如:点p1(1,2),点p 2(3,5),因为|1-3|2-5|,所以点p1与点p2的“非常距离”为|2-5|=3,也就是图中线段p1q与线段p2q长度的较大值(点q为垂直于y轴的直线p1q与垂直于x轴的直线p2q的交点). 图 图第9题图(1)已知点a(-,0),b为y轴上的一个动点,若点a与点b的“非常距离”为2,写出一个满足条件的点b的坐标;写出点a与点b的“非常距离”的最小值;(2)如图,已知c是直线y=x+3上的一个动点,点d的坐标是(0,1),求点c与点d的“非常距离”的最小值及相应的点c的坐标.【答案】针对演练1.解:(1)a=|-1|+|3|=4,b=|2+|+|-2|=2+2-=4.(2)设点m的横坐标为x,则它的纵坐标是y=,由m4得:|x|+|=4,即|x|2-4|x|+3=0,解之得:|x|=3或|x|=1,x3或x-3或x1或x-1,满足条件的点m有4个:m1(3,1),m2(-3,-1),m3(1,3),m4(-1,-3).(3)满足条件n3的所有点组成的图形是正方形,正方形的4个顶点依次为(3,0)(0,3)(-3,0)(0,-3),所有点n围成的图形面积为18.2.解:(1)根据题意得:t(1,-1)= = -2,即a-b=-2;t=(4,2)=1,即2a+b=5,解得:a=1,b=3.由得t(x,y)=.根据题意得:,解得:m-,解得:m.不等式组的解集为-m,不等式组恰好有3个整数解,即m=0,1,2,23,解得:-2p-.(2)由t(x,y)=t(y,x),得到=,整理得:(x2-y2)(2b-a)=0,t(x,y)=t(y,x)对任意实数x,y都成立,2b-a=0,即a=2b.3.(1)解:2;4;6.【解法提示】224,log242,2416,log2164,2664,log2646.(2)解:41664,log24+log216=log264.(3)解:loga(mn).(4)证明:设logamb1,logan=b2,则=m, =n,=,b1+b2=loga()=loga(mn),即logam+logan=loga(mn).4.解:(1)16x9y;25x16y;(n+1)2xn2y(n为正整数).【解法提示】仔细观察每格的特征多项式的特点,找到规律,利用规律求得答案即可.观察图形发现:第1格的“特征多项式”为 4xy,第2格的“特征多项式”为 9x4y,第3格的“特征多项式”为 16x9y,第4格的“特征多项式”为25x16y,第n格的“特征多项式”为(n+1)2xn2y (n为正整数). (2)第1格的“特征多项式”的值为10, 第2格的“特征多项式”的值为16,,解得:,x、y的值分别为, .设最小值为w,则依题意得:w=(n+1)2x+n2y= (n+1)2+n2= (n2-24n-12)= (n-12)2-.第n格的“特征多项式”有最小值为-,相应的n值为12.5.(1)解:正方形、矩形、直角梯形任选两个均可.(2)证明:abcdbe,bc=be,cbe=60,bce是等边三角形.abcdbe,bcbe,ac=ed.bce为等边三角形,bc=ce,bce=60,dcb=30,dce=bce+dcb90,在rtdce中,dc2+ce2=de2,又bc=ce,ac=de,dc2+bc2=ac2,即四边形abcd是勾股四边形.6.解:(1)正确;【解法提示】设等边三角形的边长为a,则a2+a2=2a2,符合“奇异三角形”的定义,小红提出的命题是正确的.是.【解法提示】22+42=2()2,符合“奇异三角形”的定义,abc是奇异三角形.(2)2;1.【解法提示】22+(2)2=2(2)2,且22+(2)2(2)2,第三边的边长为2,此直角三角形的三边之比为222=1.acb=90,则a2+b2=c2 ,rtabc是奇异三角形,且ba,a2+c2=2b2,由得:b=a,c=a,abc=1.(3)以ab为斜边分别在ab的两侧作直角三角形,利用直角三角形外接圆直径就是斜边,ad=bd,ab是o的直径,ab2=ad2+bd2=2ad2,ac2+cb2=ab2=2ad2,又cb=ce,ae=ad,ac2+ce2=2ae2,ace是奇异三角形.7.解:(1)sin15=sin(45-30)=sin45cos30-cos45sin30=-=-=.(2)在rtbde中,bed=90,bde=75,de=ac=7米,be=detanbde=detan75.tan75=tan(45+30)=2+,be=7(2+)=14+7,ab=ae+be=1.62+14+727.7(米).乌蒙铁塔的高度约为27.7米.8.解:(1)3;x.【解法提示】如果2x-1=3,可得3-2x-13+,解得:x.(2)0.6;0.7.【解法提示】说明:设x=n+a,其中n为x的整数部分(n为非负整数),a为x的小数部分(0a1).分两种情况:()当0a时,有x=n,x+y=(n+y)+a,这时(n+y)为(x+y)的整数部分,a为(x+y)的小数部分,x+y=n+y,又x+y=n+y,x+y=x+y.()当a1时,有x=n+1,x+y=(n+y)+a,这时(n+y)为(x+y)的整数部分,a为(x+y)的小数部分,x+y=n+y+1,又x+y=n+1+y=n+y+1,x+y=x+y.综上所述:x+y=x+y,x可取0.6,y取0.7(x可取0.4,y取0.4,答案不唯一).(3)设x=k(k为非负整数),则x=k,根据题意可得:k-kk+,即-2k2,k为非负整数,k=0,1,2,x=0,,.9.解:(1)b为y轴上的一个动点,设点b的坐标为(0,y).|-0|=2,|0-y|=2,解得,y=2或y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 婚内协议书伪造
- 矿山运输安全培训试题及答案解析
- 护理医学题库大全及答案解析
- 2025年传染病学防控知识综合能力测评模拟考试卷答案及解析
- 2025年麻醉学基础知识选择题测验答案及解析
- 泰康新人岗前班考试及答案解析
- 2025年肝胆内科大肝病诊断处理模拟测试卷答案及解析
- 2025年急诊医学模拟实战演练试卷答案及解析
- arp 协议书的作用是 ( )
- 瑜伽教培协议书
- 2025广东珠海市下半年市直机关事业单位招聘合同制职员37人考试参考试题及答案解析
- 软件开发驻场合同协议
- 音乐培训机构招生
- 生产成本控制及预算管理表格模板
- 动漫艺术概论考试卷子及答案
- 山东省青岛市即墨区实验学校2025-2026学年九年级上学期开学考试英语试题(含答案)
- 浙江省浙南名校联盟2025-2026学年高二上学期开学返校联考英语试卷(含音频)
- 2025年国企中层干部竞聘笔试题及答案
- 材料返款协议书
- 教育惩戒培训课件
- 期末教学质量分析会校长讲话:把脉找因、沉心补课教学质量没有“回头路”
评论
0/150
提交评论