




免费预览已结束,剩余15页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2014-2015学年山东省菏泽市曹县三桐中学高三(上)第五次月考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)1已知m=x|x3|4,n=x|0,xz,则mn=() a b 0 c 2 d x|2x72下列有关命题的说法正确的是() a 命题“若x2=1,则x=1”的否命题为“若x2=1,则x1” b 命题“xr,x2+x10”的否定是“xr,x2+x10” c 命题“若x=y,则sinx=siny”的逆否命题为假命题 d 若“p或q”为真命题,则p,q至少有一个为真命题3执行如图所示的程序框图,输出的k值是() a 8 b 7 c 6 d 54圆(x1)2+y2=1被直线xy=0分成两段圆弧,则较短弧长与较长弧长之比为() a 1:2 b 1:3 c 1:4 d 1:55复数z=(mr,i为虚数单位)在复平面上对应的点不可能位于() a 第一象限 b 第二象限 c 第三象限 d 第四象限6设a=30.5,b=log32,c=log0.53,则() a cba b cab c abc d bca7各项都是正数的等比数列an中,a2,a3,a1成等差数列,则的值是() a b c d 或8若函数f(x)=(k1)axax(a0,a1)在r上既是奇函数,又是减函数,则g(x)=loga(x+k)的图象是() a b c d 9设偶函数f(x)=asin(x+)(a0,0,0)的部分图象如图所示,klm为等腰直角三角形,kml=90,kl=1,则f()的值为() a b c d 10已知函数f(x)=,把函数g(x)=f(x)x的偶数零点按从小到大的顺序排列成一个数列,该数列的前n项的和sn,则s10=() a 45 b 55 c 90 d 110二、填空题:本大题共5小题,每小题5分,共25分.答案须填在答题纸相应的横线上.11将函数的图象上各点的横坐标缩小为原来的一半,纵坐标保持不变得到新函数g(x),则g(x)的最小正周期是12已知直线l:3x+y6=0和圆心为c的圆x2+y22y4=0相交于a,b两点,则线段ab的长度等于13若的展开式的各项系数绝对值之和为1024,则展开式中x项的系数为14由曲线y=,直线y=x2及y轴所围成的图形的面积为15(5分)(2014凉州区二模)对大于或等于2的正整数的幂运算有如下分解方式:22=1+3 32=1+3+5 42=1+3+5+723=3+5 33=7+9+11 43=13+15+17+19根据上述分解规律,若m2=1+3+5+11,p3分解中最小正整数是21,则m+p=三、解答题:本大题共6小题,共75分.16已知向量=(sin,cos),=(cos,cos),函数f(x)=,(1)求函数f(x)的单调递增区间;(2)如果abc的三边a、b、c,满足b2=ac,且边b所对的角为x,试求x的范围及此时函数f(x)的值域17在如图的多面体中,ef平面aeb,aeeb,adef,efbc,bc=2ad=4,ef=3,ae=be=2,g是bc的中点()求证:ab平面deg;()求二面角cdfe的余弦值18已知函数f(x)=x3+ax2+bx+c图象上的点p(1,f(1)处的切线方程为y=3x+1,函数g(x)=f(x)ax2+3是奇函数(1)求函数f(x)的表达式;(2)求函数f(x)的极值19已知双曲线=1的一个焦点为,一条渐近线方程为y=x,其中an是以4为首项的正数数列()求数列cn的通项公式;()若不等式对一切正常整数n恒成立,求实数x的取值范围20在直角坐标系xoy中,椭圆的左、右焦点分别为f1,f2其中f2也是抛物线c2:y2=4x的焦点,点m为c1与c2在第一象限的交点,且()求c1的方程;()若过点d(4,0)的直线l与c1交于不同的两点e,fe在df之间,试求ode 与odf面积之比的取值范围(o为坐标原点)21已知函数f(x)对任意的实数x、y都有f(x+y)=f(x)+f(y)1,且当x0时,f(x)1()求证:函数f(x)在r上是增函数;()若关于x的不等式f(x2ax+5a)f(m)的解集为x|3x2,求m的值()若f(1)=2,求f(2014)的值2014-2015学年山东省菏泽市曹县三桐中学高三(上)第五次月考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1已知m=x|x3|4,n=x|0,xz,则mn=() a b 0 c 2 d x|2x7考点: 交集及其运算专题: 计算题分析: 利用绝对值不等式及分式不等式的解法,我们易求出集合m,n,再根据集合交集运算法则,即可求出答案解答: 解:m=x|x3|4=(1,7),n=x|0,xz=x|2x1,xz=1,0,mn=0故选b点评: 本题考查的知识点是交集及其运算,其中根据绝对值不等式及分式不等式的解法,求出集合m,n,是解答本题的关键2下列有关命题的说法正确的是() a 命题“若x2=1,则x=1”的否命题为“若x2=1,则x1” b 命题“xr,x2+x10”的否定是“xr,x2+x10” c 命题“若x=y,则sinx=siny”的逆否命题为假命题 d 若“p或q”为真命题,则p,q至少有一个为真命题考点: 复合命题的真假专题: 计算题分析: 根据原命题与否命题的关系,可得a选项不正确;根据含有量词的命题否定的规律,得到b选项是不正确的;根据原命题与逆否命题真值相同,可知c选项不正确;对于d,得到复合命题p或q的真值表,可得d选项正确解答: 解:命题“若x2=1,则x=1”的否命题为“若x21,则x1”所以a错误命题“xr,x2+x10”的否定是“xr,x2+x10”,所以b错误命题“若x=y,则sinx=siny”正确,则命题“若x=y,则sinx=siny”的逆否命题也正确,所以c错误若“p或q”为真命题,根据复合命题p或q的真值表,则p,q至少有一个为真命题,故d为真故选d点评: 本题以命题真假的判断为载体,着重考查了四种命题及其相互关系和含有量词的命题的否定等知识点,属于基础题3执行如图所示的程序框图,输出的k值是() a 8 b 7 c 6 d 5考点: 程序框图专题: 算法和程序框图分析: 根据题意,模拟程序框图的运行过程,得出程序框图输出的k值是什么解答: 解:根据题意,模拟程序框图的运行过程,如下;n=3,k=0,3不是偶数,n=33+1=10,k=0+1=1,101;10是偶数,n=5,k=1+1=2,51;5不是偶数,n=35+1=16,k=2+1=3,161;16是偶数,n=8,k=3+1=4,81;8是偶数,n=4,k=4+1=5,41;4是偶数,n=2,k=5+1=6,21;2是偶数,n=1,k=6+1=7,1=1;输出k:7故选:b点评: 本题考查了求程序框图的运行结果的问题,解题时应模拟程序框图的运行过程,以便得出结论,是基础题4圆(x1)2+y2=1被直线xy=0分成两段圆弧,则较短弧长与较长弧长之比为() a 1:2 b 1:3 c 1:4 d 1:5考点: 直线与圆相交的性质专题: 计算题分析: 根据圆的方程求得圆心坐标和半径,进而根据点到直线的距离求得圆心到直线的距离,利用勾股定理求得直线被圆截的弦长,进而可利用勾股定理推断出弦所对的角为直角,进而分别求得较短的弧长和较长的弧长,答案可得解答: 解:圆的圆心为(1,0)到直线xy=0的距离为=弦长为2=根据勾股定理可知弦与两半径构成的三角形为直角三角形,较短弧长为21=,较长的弧长为2=较短弧长与较长弧长之比为1:3故选b点评: 本题主要考查了直线与圆相交的性质一般采用数形结合的方法,在弦与半径构成的三角形中,通过解三角形求得问题的答案5复数z=(mr,i为虚数单位)在复平面上对应的点不可能位于() a 第一象限 b 第二象限 c 第三象限 d 第四象限考点: 复数代数形式的乘除运算;复数的基本概念专题: 计算题分析: 利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z;令复数的实部、虚部大于0,得到不等式无解,即对应的点不在第一象限解答: 解:由已知z=(m4)2(m+1)i在复平面对应点如果在第一象限,则而此不等式组无解即在复平面上对应的点不可能位于第一象限故选a点评: 本题考查复数的除法运算法则:分子、分母同乘以分母的共轭复数;考查复数的几何意义:复数与复平面内的以实部为横坐标,虚部为纵坐标的点一一对应6设a=30.5,b=log32,c=log0.53,则() a cba b cab c abc d bca考点: 对数值大小的比较专题: 计算题分析: 根据指数函数和对数函数的性质,得到三个数字与0,1之间的大小关系,利用两个中间数字得到结果解答: 解:a=30.510b=log321c=log0.530三个数字的大小根据三个数字的范围得到cba故选a点评: 本题考查对数值的大小比较,本题解题的关键是找出一个中间数字,使得三个数字利用中间数字隔开7各项都是正数的等比数列an中,a2,a3,a1成等差数列,则的值是() a b c d 或考点: 等差数列的性质;等比数列的通项公式专题: 计算题分析: 由a2,a3,a1成等差数列可得a1、a2、a3的关系,结合等比数列的通项公式即可求出q,而由等比数列的性质可得 则 =,故本题得解解答: 解:设an的公比为q(q0),由a3=a2+a1,得q2q1=0,解得q=则 =故答案为 点评: 此题考查学生灵活运用等差数列的性质及等比数列的性质化简求值,灵活运用等比数列的通项公式化简求值,是一道基础题8若函数f(x)=(k1)axax(a0,a1)在r上既是奇函数,又是减函数,则g(x)=loga(x+k)的图象是() a b c d 考点: 奇偶性与单调性的综合;对数函数的图像与性质专题: 数形结合分析: 根据函数是一个奇函数,函数在原点出有定义,得到函数的图象一定过原点,求出k的值,根据函数是一个减函数,看出底数的范围,得到结果解答: 解:函数f(x)=(k1)axax(a0,a1)在r上是奇函数,f(0)=0k=2,又f(x)=axax为减函数,所以1a0,所以g(x)=loga(x+2)定义域为x2,且递减,故选:a点评: 本题考查函数奇偶性和单调性,即对数函数的性质,本题解题的关键是看出题目中所出现的两个函数性质的应用9设偶函数f(x)=asin(x+)(a0,0,0)的部分图象如图所示,klm为等腰直角三角形,kml=90,kl=1,则f()的值为() a b c d 考点: 由y=asin(x+)的部分图象确定其解析式专题: 计算题分析: 通过函数的图象,利用kl以及kml=90求出求出a,然后函数的周期,确定,利用函数是偶函数求出,即可求解f()的值解答: 解:因为f(x)=asin(x+)(a0,0,0)的部分图象如图所示,klm为等腰直角三角形,kml=90,kl=1,所以a=,t=2,因为t=,所以=,函数是偶函数,0,所以=,函数的解析式为:f(x)=sin(x+),所以f()=sin(+)=cos=故选:d点评: 本题考查函数的解析式的求法,函数奇偶性的应用,考查学生识图能力、计算能力10已知函数f(x)=,把函数g(x)=f(x)x的偶数零点按从小到大的顺序排列成一个数列,该数列的前n项的和sn,则s10=() a 45 b 55 c 90 d 110考点: 数列的求和;分段函数的应用专题: 函数的性质及应用;等差数列与等比数列分析: 由分段函数解析式得到函数f(x)在x0时的分段解析式,首先求得函数g(x)=f(x)x在(2,0上的零点,然后根据函数的图象平移得到函数g(x)=f(x)x在(0,2,(2,4,(4,6,(2n,2n+2上的零点,得到偶数零点按从小到大的顺序排列的数列,利用等差数列的前n项和得答案解答: 解:当0x2时,有2x20,则f(x)=f(x2)+1=2x2,当2x4时,有0x22,则f(x)=f(x2)+1=2x4+1,当4x6时,有2x24,则f(x)=f(x2)+1=2x6+2,当6x8时,有4x16,则f(x)=f(x2)+1=2x8+3,以此类推,当2nx2n+2(其中nn)时,则f(x)=f(x2)+1=2x2n2+n,函数f(x)=2x的图象与直线y=x+1的交点为:(0,1)和(1,),由于指数函数f(x)=2x为增函数且图象下凸,故它们只有这两个交点将函数f(x)=2x和y=x+1的图象同时向下平移一个单位,即得到函数f(x)=2x1和y=x的图象,取x0的部分,可见它们有两个交点(0,0),(1,)即当x0时,方程f(x)x=0有两个根x=1,x=0;当0x2时,由函数图象平移可得g(x)=f(x)x的零点为1,2;以此类推,函数y=f(x)与y=x在(2,4,(4,6,(2n,2n+2上的零点分别为:3,4;5,6;2n+1,2n+2;综上所述函数g(x)=f(x)x的偶数零点按从小到大的顺序排列所得数列为:0,2,4,其通项公式为:an=2(n1),前10项的和为s10=故选:c点评: 本题考查了分段函数的应用,考查了函数零点的判断方法,考查了等差数列的和的求法,是中档题二、填空题:本大题共5小题,每小题5分,共25分.答案须填在答题纸相应的横线上.11将函数的图象上各点的横坐标缩小为原来的一半,纵坐标保持不变得到新函数g(x),则g(x)的最小正周期是考点: 函数y=asin(x+)的图象变换;三角函数的周期性及其求法专题: 计算题分析: 由左加右减上加下减的原则,函数的图象上各点的横坐标缩小为原来的一半,得到新函数g(x),然后利用函数的周期公式求解即可解答: 解:将函数的图象上各点的横坐标缩小为原来的一半,得到函数g(x)=,所以g(x)的最小正周期是:=;故答案为:点评: 本题是基础题,考查三角函数的图象的变换,三角函数的周期的求法,注意平移与伸缩变换的差别12已知直线l:3x+y6=0和圆心为c的圆x2+y22y4=0相交于a,b两点,则线段ab的长度等于考点: 直线与圆的位置关系专题: 直线与圆分析: 根据直线和圆相交的弦长公式进行求解即可解答: 解:圆的标准方程为x2+(y1)2=5,则圆心为c(0,1),半径r=,则圆心到直线的距离d=,则线段ab的长度|ab|=2=,故答案为:点评: 本题主要考查直线和圆相交以及弦长的求解,根据弦长公式是解决本题的关键13若的展开式的各项系数绝对值之和为1024,则展开式中x项的系数为15考点: 二项式系数的性质专题: 计算题;二项式定理分析: 根据展开式的各项系数绝对值之和为4n=1024,求得n=5在展开式的通项公式中,令x的幂指数等于1,求得r的值,可得展开式中x项的系数解答: 解:在的展开式中,令x=1,可得展开式的各项系数绝对值之和为4n=22n=1024=210,n=5故展开式的通项公式为tr+1=令=1,求得r=1,故展开式中x项的系数为15故答案为:15点评: 本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题14由曲线y=,直线y=x2及y轴所围成的图形的面积为考点: 定积分专题: 导数的综合应用分析: 利用微积分基本定理即可求出解答: 解:如图所示:联立解得,m(4,2)由曲线y=,直线y=x2及y轴所围成的图形的面积s=故答案为点评: 熟练掌握微积分基本定理是解题的关键15(5分)(2014凉州区二模)对大于或等于2的正整数的幂运算有如下分解方式:22=1+3 32=1+3+5 42=1+3+5+723=3+5 33=7+9+11 43=13+15+17+19根据上述分解规律,若m2=1+3+5+11,p3分解中最小正整数是21,则m+p=11考点: 归纳推理专题: 规律型分析: 根据m2=1+3+5+11,p3的分解中最小的正整数是21,利用所给的分解规律,求出m、p,即可求得m+p的值解答: 解:m2=1+3+5+11=36,m=623=3+5,33=7+9+11,43=13+15+17+19,53=21+23+25+27+29,p3的分解中最小的数是21,p3=53,p=5m+p=6+5=11故答案为:11点评: 本题考查归纳推理,考查学生的阅读能力,确定m、p的值是解题的关键三、解答题:本大题共6小题,共75分.16已知向量=(sin,cos),=(cos,cos),函数f(x)=,(1)求函数f(x)的单调递增区间;(2)如果abc的三边a、b、c,满足b2=ac,且边b所对的角为x,试求x的范围及此时函数f(x)的值域考点: 平面向量数量积的运算;三角函数中的恒等变换应用;正弦函数的单调性专题: 综合题分析: (1)利用向量的数量积公式及辅助角公式,化简函数,即可求得函数f(x)的单调递增区间;(2)通过b2=ac,利用余弦定理求出cosx的范围,然后求出x的范围,进而可求三角函数的值域解答: 解:(1)向量=(sin,cos)=(cos,cos),函数f(x)=sin()+,令2k2k+,解得故函数f(x)的单调递增区间为(2)由已知b2=ac,cosx=,cosx1,0xsin()1,sin()+1+f(x)的值域为(,1+点评: 本题是中档题,考查三角函数的化简求值,余弦定理的应用,正弦函数的值域的求法,考查计算能力17在如图的多面体中,ef平面aeb,aeeb,adef,efbc,bc=2ad=4,ef=3,ae=be=2,g是bc的中点()求证:ab平面deg;()求二面角cdfe的余弦值考点: 用空间向量求平面间的夹角;直线与平面平行的判定;二面角的平面角及求法专题: 计算题;空间位置关系与距离;空间角分析: ()由adef,efbc,知adbc由bc=2ad,g是bc的中点,知四边形adgb是平行四边形,由此能证明ab平面deg()由ef平面aeb,ae平面aeb,be平面aeb,知efae,efbe,由aeeb,知eb,ef,ea两两垂直以点e为坐标原点,eb,ef,ea分别为x,y,z轴建立空间直角坐标系,利用向量法能够求出二面角cdfe的余弦值解答: ()证明:adef,efbc,adbc又bc=2ad,g是bc的中点,四边形adgb是平行四边形,abdgab平面deg,dg平面deg,ab平面deg(6分)()解:ef平面aeb,ae平面aeb,be平面aeb,efae,efbe,又aeeb,eb,ef,ea两两垂直(7分)以点e为坐标原点,eb,ef,ea分别为x,y,z轴建立空间直角坐标系,由已知得a(0,0,2),b(2,0,0),c(2,4,0),f(0,3,0),d(0,2,2),g(2,2,0),由已知得=(2,0,0)是平面efda的法向量,设平面dcf的法向量=(x,y,z),=(0,1,2),=(2,1,0),解得=(1,2,1)设二面角cdfe的平面角为,则cos=cos,=二面角cdfe的余弦值为点评: 本题考查直线与平面平行的证明,考查二面角的余弦值的求法,解题时要认真审题,仔细解答,注意向量法的合理运用18已知函数f(x)=x3+ax2+bx+c图象上的点p(1,f(1)处的切线方程为y=3x+1,函数g(x)=f(x)ax2+3是奇函数(1)求函数f(x)的表达式;(2)求函数f(x)的极值考点: 利用导数研究函数的极值;函数解析式的求解及常用方法;利用导数研究曲线上某点切线方程专题: 综合题;转化思想分析: (1)由题意先求f(x)的导函数,利用导数的几何含义和切点的实质及g(x)为奇函数建立a,b,c的方程求解即可;(2)有(1)可知函数f(x)的解析式,先对函数f(x)求导,再利用极值概念加以求解即可解答: 解:(1)f(x)=3x2+2ax+b,函数f(x)在x=1处的切线斜率为3,f(1)=3+2a+b=3,即2a+b=0,又f(1)=1+a+b+c=2得a+b+c=1,又函数g(x)=x3+bx+c+3是奇函数,c=3a=2,b=4,c=3,f(x)=x32x2+4x3(2)f(x)=3x24x+4=(3x2)(x+2),令f(x)=0,得x=或x=2, 当x(,2)时,f(x)0,函数f(x)在此区间上单调递减;当x时,f(x)0,函数f(x)在此区间单调递增;当x时,f(x)0,函数f(x)在此区间上单调递减;所以f(x)极小=f(2)=11,f(x)极大=f点评: (1)此问重点考查了导函数的几何意义,奇函数的概念和切点的定义,还考查了方程的数学思想;(2)此问考查了函数的极值的定义和求极值的方法19已知双曲线=1的一个焦点为,一条渐近线方程为y=x,其中an是以4为首项的正数数列()求数列cn的通项公式;()若不等式对一切正常整数n恒成立,求实数x的取值范围考点: 直线与圆锥曲线的综合问题专题: 圆锥曲线中的最值与范围问题分析: ()由于双曲线方程为的一个焦点为(,0),可得cn=an+an1由于一条渐近线方程为,可得,即=2,利用等比数列的通项公式即可得出(ii)设tn=+,利用“错位相减法”、等比数列的前n项和公式可得tn=,故原不等式等价于+logax恒成立,化为logax0由于a1,即可得出解答: 解:()双曲线方程为的一个焦点为(,0),cn=an+an1又一条渐近线方程为,即=2,=2n+1=32n(ii)设tn=+,=,得,=,tn=,故原不等式等价于+logax恒成立,logax0a1,x1,实数x的取值范围是1,+)点评: 本题考查了双曲线的标准方程及其性质、等比数列的通项公式及前n项和公式、“错位相减法”,考查了不等式恒成立的等价转化方法,考查了推理能力与计算能力,属于难题20在直角坐标系xoy中,椭圆的左、右焦点分别为f1,f2其中f2也是抛物线c2:y2=4x的焦点,点m为c1与c2在第一象限的交点,且()求c1的方程;()若过点d(4,0)的直线l与c1交于不同的两点e,fe在df之间,试求ode 与odf面积之比的取值范围(o为坐标原点)考点: 直线与圆锥曲线的综合问题;椭圆的标准方程分析: ()依题意知f2(1,0),设m(x1,y1)由抛物线定义得,即由此能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创城专员面试题及答案
- 2025年岗巴县教育系统招聘教师考试笔试试题(含答案)
- 2025年非高危行业生产经营单位主要负责人及安全管理人员安全生产知识和管理能力考试试卷(含答案)
- 面试即兴演讲试题及范例
- 2024血透治疗中的监护及护理要点试题及答案
- 新进员工岗前安全教育培训试题及答案
- 2025年新《公司法》知识竞赛题库(含答案)
- 2024年大学礼仪知识竞赛题库与答案
- 2024年公职人员考试时事政治考试题库(附答案)
- 北京户外徒步知识培训课件
- 第三章:堤防工程加固施工
- 蒂森CTU2调试说明附件
- GB/T 21837-2023铁磁性钢丝绳电磁检测方法
- SX-22163-QR345工装维护保养记录
- JJF 2025-2023高动态精密离心机校准规范
- 2023年航空职业技能鉴定考试-候机楼服务技能考试题库(含答案)
- 医院腹腔镜手术知情同意书
- p型半导体和n型半导体课件
- GB/T 748-2005抗硫酸盐硅酸盐水泥
- 走好群众路线-做好群众工作(黄相怀)课件
- 民间文学(全套课件)
评论
0/150
提交评论