1.3.3函数y=Asin(wx+q)的图象(2)导学案.doc_第1页
1.3.3函数y=Asin(wx+q)的图象(2)导学案.doc_第2页
1.3.3函数y=Asin(wx+q)的图象(2)导学案.doc_第3页
1.3.3函数y=Asin(wx+q)的图象(2)导学案.doc_第4页
1.3.3函数y=Asin(wx+q)的图象(2)导学案.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.3.3函数的图象(2)【学习目标】1.理解由y=sinx的图象逐步向变换的过程,会用三角函数的图象和性质解决一些简单的问题;2.会由图象求函数的解析式,解决有关简单的问题;3.进一步体会数形结合的魅力,体会化归的思想方法.【学习重点、难点】函数的图象和性质【学习过程】一、复习1.函数的振幅、周期、初相各是多少?它的图象可由函数y=sinx的图象经过怎样的变换而得到?2.求函数图象的对称轴和对称中心.二、典型例题例1、已知函数,(1)求函数的最小正周期;(2)用五点法作出函数的图象,并说明该函数的图象可以由的图象怎样变换得到?(3)求函数的最大值及取得最大值时的集合;(4)求函数的单调递增区间;例2、如下图是函数f(x)Asin(x)(其中A0,)的图象的一部分,求f(x)的解析式. 练习、已知点M(,3)是函数(A0,)的图象的一个最高点,且点N()是图象上与点M相邻的一个最低点,求此函数的解析式.小结:由函数的图象(或图象特征)求函数的表达式的一般步骤是:例3、弹簧挂着的小球上、下振动,它在时间时离开平衡位置(就是静止时的位置)的距离由函数关系式决定:.(1)以为横坐标,为纵坐标作出函数的图象();(2)求小球开始振动的位置;(3)经过多长时间,小球往返振动一次?(4)每秒钟内小球能往返振动多少次?回顾反思: _三、当堂检测1.已知y=sinx +的最大值为,最小值为,则_,=_.2.函数yAsin(x) (A0,w0)的部分图象如图,则该函数的解析式为_.3.若函数的最大值为5,最小值为-1,则它的振幅为_.4.若函数的图象关于直线对称,其中,则的值为_.5.若函数为偶函数,且,则的最大值是_.四、课后作业 1.已知函数的图象为C.(1)为了得到函数的图象,只需把C上的所有点_;(2) 为了得到函数的图象,只需把C上的所有点_;(3) 为了得到函数的图象,只需把C上的所有点_;2. 函数y=sin(2x+)的图象的对称轴方程是_.3.函数图象的两条相邻对称轴之间的距离是_.4.若函数)的图象关于y轴对称,则=_.5.的增区间为_ ,对称轴方程为 _.6.关于函数有下列命题:其最小正周期为;其图象可由向右平移个单位长度得到;其图象关于点对称;直线是图象的一条对称轴,其中正确的是_.7.若函数是奇函数,则=_.8.函数f(x)= x的图象交x轴于相邻的两点A、B,且A、B的距离为1,图象过点(1,),求f(x)的解析式.9.已知函数的一段图象如图所示.求函数的解析式。10. 函数f(x)=-2asin(2x+)+2a+b (1)若x,时,函数f(x)的值域为2,5,求实数a、b的值; (2)若a0,对于上面解出的f(x),定义域为R时,求该函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论