1.2.1中心投影与平行投影_第1页
1.2.1中心投影与平行投影_第2页
1.2.1中心投影与平行投影_第3页
1.2.1中心投影与平行投影_第4页
1.2.1中心投影与平行投影_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.2空间几何体的三视图和直观图1.2.1中心投影与平行投影1.2.2空间几何体的三视图学习目标1.了解中心投影和平行投影.2.能画出简单空间图形的三视图.3.能识别三视图所表示的立体模型.知识点一投影的概念(1)定义:由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.(2)投影线:光线.(3)投影面:留下物体影子的屏幕.知识点二投影的分类投影定义特征分类中心投影光由一点向外散射形成的投影投影线交于一点平行投影在一束平行光线照射下形成的投影投影线平行正投影和斜投影知识点三三视图(1)定义正视图:光线从几何体的前面向后面正投影,得到的投影图.侧视图:光线从几何体的左面向右面正投影,得到的投影图.俯视图:光线从几何体的上面向下面正投影,得到的投影图.(2)三视图的画法规则正、俯视图都反映物体的长度“长对正”;正、侧视图都反映物体的高度“高平齐”;俯、侧视图都反映物体的宽度“宽相等”.(3)三视图的排列顺序:先画正视图,侧视图在正视图的右边,俯视图在正视图的下边.1.直线的平行投影是直线.()2.圆柱的正视图与侧视图一定相同.()3.球的正视图、侧视图、俯视图都相同.()题型一平行投影的概念例1(1)下列说法正确的是()A.矩形的平行投影一定是矩形B.平行投影与中心投影的投影线均互相平行C.两条相交直线的投影可能平行D.如果一条线段的平行投影仍是一条线段,那么这条线段中点的投影必是这条线段投影的中点考点平行投影题点判断平行投影的结果及应用答案D解析平行投影因投影线的方向变化而不同,因而平行投影的形状不固定,故A不正确.平行投影的投影线互相平行,中心投影的投影线相交于一点,故B不正确.无论是平行投影还是中心投影,两条直线的交点都在两条直线的投影上,因而两条相交直线的投影不可能平行,故C不正确.两条线段的平行投影长度的比等于这两条线段长度的比,故D正确.(2)如图所示,在正方体ABCDA1B1C1D1中,M,N分别是BB1,BC的中点,则图中阴影部分在平面ADD1A1上的正投影是()答案A解析由正投影的定义,知点M,N在平面ADD1A1上的正投影分别是AA1,DA的中点,D在平面ADD1A1上的投影还是D,因此A正确.反思感悟(1)判断一个几何体的投影是什么图形,先分清楚是平行投影还是中心投影,投影面的位置如何,再根据平行投影或中心投影的性质来判断.(2)画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点、端点等,方法是先画出这些关键点的投影,再依次连接各投影点即可得出此图形在该平面上的投影.跟踪训练1如图1所示,在正方体ABCDA1B1C1D1中,E,F分别是AA1,C1D1的中点,G是正方形BCC1B1的中心,则四边形AGFE在该正方体的各个面上的投影可能是图2中的_.(填序号)考点平行投影题点判断平行投影的结果及应用答案解析要画出四边形AGFE在该正方体的各个面上的投影,只需画出四个顶点A,G,F,E在每个面上的投影,再顺次连接即得到在该面上的投影,并且在两个平行平面上的投影是相同的.在平面ABCD和平面A1B1C1D1上的投影是图;在平面ADD1A1和平面BCC1B1上的投影是图;在平面ABB1A1和平面DCC1D1上的投影是图.题型二三视图的识别例2如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是()A. B. C. D.考点多面体的三视图题点多面体的三视图答案D解析在各自的三视图中,正方体的三个视图都相同;圆锥有两个视图相同;三棱台的三个视图都不同;正四棱锥有两个视图相同.反思感悟根据空间几何体的直观图找三视图可以直接进行,找正视图就从正面看过去,找侧视图就从左边向右边看去,找俯视图就从上面向下面看去.注意能看到的部分用实线表示,不能看到的部分用虚线表示.跟踪训练2已知三棱柱ABCA1B1C1,如图所示,则其三视图为()答案A解析其正视图为矩形,侧视图为三角形,俯视图中棱CC1可见,为实线,只有A符合.题型三画几何体的三视图例3(1)画出如图所示的几何体(正棱锥)的三视图.考点多面体的三视图题点棱锥的三视图解正四棱锥的三视图如图所示,(2)画出如图所示的组合体的三视图.考点简单组合体的三视图题点其他柱、锥、台、球组合的三视图解反思感悟画三视图的注意事项:(1)务必做到长对正,高平齐,宽相等.(2)三视图的安排方法是正视图与侧视图在同一水平位置,且正视图在左,侧视图在右,俯视图在正视图的正下方.(3)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.跟踪训练3如图是同一个圆柱的不同放置,阴影面为正面,分别画出它们的三视图.考点旋转体的三视图题点圆柱的三视图解三视图如图所示.(1)(2)由三视图还原几何体典例说出下面的三视图表示的几何体的结构特征.考点多面体的三视图题点棱台的三视图解几何体为三棱台,结构特征如图:素养评析(1)由三视图还原几何体,要遵循以下三步:看视图,明关系;分部分,想整体;综合起来,定整体,只要熟悉简单几何体的三视图的形状,由简单几何体的三视图还原几何体并不困难.对于组合体,需要依据三视图将它分几部分考虑,确定它是由哪些简单几何体组成的,然后利用上面的步骤,分开还原,再合并即可.注意依据三视图中虚线、实线确定轮廓线.(2)借助几何直观和空间想象感知事物的形态与变化,由三视图还原几何体是培养学生直观想象的数学核心素养的好素材.1.以下关于投影的叙述不正确的是()A.手影就是一种投影B.中心投影的投影线相交于点光源C.斜投影的投影线不平行D.正投影的投影线和投影面垂直答案C2.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱 B.棱台C.圆柱 D.圆台答案D3.一个几何体的三视图如图所示,这个几何体可能是一个()A.三棱锥B.底面不规则的四棱锥C.三棱柱D.底面为正方形的四棱锥答案C4.一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是()A.球 B.三棱锥 C.圆柱 D.正方体考点旋转体的三视图题点圆柱的三视图答案C解析球的正视图、侧视图和俯视图均为圆,且形状相同,大小相等;三棱锥的正视图、侧视图和俯视图可以为全等的三角形;正方体的正视图、侧视图和俯视图均为正方形,且形状相同,大小相等;圆柱的正视图、侧视图和俯视图不可能形状相同,故选C.5.有一个正三棱柱(俯视图为正三角形)的三视图如图所示,则这个三棱柱的高和底面边长分别为_.考点多面体的三视图题点棱柱的三视图答案2,4解析由正三棱柱三视图中的数据,知三棱柱的高为2,底面边长为24.1.三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,画几何体三视图的要求是正视图、俯视图长对正,正视图、侧视图高平齐,俯视图、侧视图宽相等,前后对应,画出的三视图要检验是否符合“长对正、高平齐、宽相等”的基本特征.2.画组合体的三视图的步骤特别提醒:画几何体的三视图时,能看见的轮廓线和棱用实线表示,看不见的轮廓线和棱用虚线表示.一、选择题1.已知ABC,选定的投影面与ABC所在平面平行,则经过中心投影后所得的三角形与ABC()A.全等 B.相似C.不相似 D.以上都不正确考点中心投影题点中心投影的判断与应用答案B解析中心投影的投影线交于一点,几何体在这种投影下的形状相似.2.关于几何体的三视图,下列说法正确的是()A.正视图反映物体的长和宽B.俯视图反映物体的长和高C.侧视图反映物体的高和宽D.正视图反映物体的高和宽答案C3.如图是一个物体的三视图,则此三视图所描述的物体的直观图是()答案D4.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()考点简单组合体的三视图题点切割形成几何体的三视图答案D解析从左往右看,主体的轮廓是一个长方形,长方体的对角线可以看见,且该对角线是从左下角往右上角倾斜的.5.一几何体的直观图如图,下列给出的四个俯视图中正确的是()答案B6.已知三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形.若三棱柱的正视图(如图所示)的面积为8,则侧视图的面积为()A.8 B.4 C.4 D.2考点多面体的三视图题点棱柱的三视图答案C解析设该三棱柱的侧棱长为a,则2a8,所以a4,该三棱柱的侧视图是一个矩形,一边长为4,另一边长等于三棱柱底面等边三角形的高,即为,所以侧视图的面积为4,故选C.7.一个长方体去掉一角,如图所示,关于它的三视图,下列画法正确的是()考点简单组合体的三视图题点切割形成几何体的三视图答案A解析由于去掉一角后,出现了一个小三角形的面.正视图中,长方体上底面和右边侧面上的三角形的两边的正投影分别和矩形的两边重合,故A对,B错;侧视图中的线应是虚线,故C错;俯视图中的线应是实线,故D错.8.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是()答案C解析注意到在三视图中,俯视图的宽度应与侧视图的宽度相等,而在选项C中,其宽度为,与题中所给的侧视图的宽度1不相等,故选C.二、填空题9.如图,在多面体ABCABC中,底面ABC为正三角形,三条侧棱AA,BB,CC分别平行,侧棱垂直于底面ABC,且3AABBCCAB,则下面图形可视为多面体ABCABC的正视图的是_.答案10.如图,在正方体ABCDA1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥PABC的正视图与侧视图的面积的比值为_.考点多面体的三视图题点棱锥的三视图答案1解析依题意得三棱锥PABC的正视图与侧视图分别是一个三角形,且这两个三角形的一条边长都等于正方体的棱长,这条边上的高也都等于正方体的棱长,因此三棱锥PABC的正视图与侧视图的面积的比值为1.11.一个几何体的三视图如图所示,则其侧视图的面积为_.考点简单组合体的三视图题点其他柱、锥、台、球组合的三视图答案4解析依题意得几何体的侧视图面积为2224.12.已知某几何体的正视图和侧视图均如图所示,给出下列5个图形;其中可以作为该几何体的俯视图的图形个数是_.答案4解析不可以,因为等边三角形的边与高不等,所以正视图和侧视图不相同.其余4个图都可以作为俯视图,故其中可以作为该几何体的俯视图的图形个数是4.三、解答题13.画出所给几何体的三视图.考点多面体的三视图题点多面体的三视图解题图为正六棱柱,可按棱柱的画法画出,其三视图如图a;题图为一个圆锥与一个圆台的组合体,按圆锥、圆台的三视图画出它们的组合形状,其三视图如图b.14.将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为下列选项中的()考点多面体的三视图题点多面体的三视图答案B解析显然从左边看到的是一个正方形,因为割线AD1可见,所以用实线表示;而割线B1C不可见,所以用虚线表示.故选B.15.一个物体由几

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论