主成分分析的主要目的是希望用较少的变量去解释原来资料中的大部分变异.doc_第1页
主成分分析的主要目的是希望用较少的变量去解释原来资料中的大部分变异.doc_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

主成分分析的主要目的是希望用较少的变量去解释原来资料中的大部分变异,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量。通常是选出比原始变量个数少,能解释大部分资料中的变异的几个新变量,即所谓主成分,并用以解释资料的综合性指标。由此可见,主成分分析实际上是一种降维方法。主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太 多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的。 主成分分析法是一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。在数学变换中保持变量的总方差不变,使第一变量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分。依次类推,I个变量就有I个主成分。其中Li为p维正交化向量(LiLi1),Zi之间互不相关且按照方差由大到小排列,则称Zi为X的第I个主成分。设X的协方差矩阵为,则必为半正定对称矩阵,求特征值i(按从大到小排序)及其特征向量,可以证明,i所对应的正交化特征向量,即为第I个主成分Zi所对应的系数向量Li,而Zi的方差贡献率定义为ij,通常要求提取的主成分的数量k满足kj0.85。 分析步骤:数据标准化;求相关系数矩阵;一系列正交变换,使非对角线上的数置0,加到主对角上;得特征根xi(即相应那个主成分引起变异的方差),并按照从大到小的顺序把特征根排列;求各个特征根对应的特征向量;用下式计算每个特征根的贡献率Vi;Vi=xi/(x1+x2+.)根据特征根及其特征向量解释主成分物理意义。城市化是指伴随着经济增长,由产业结构非农化而引发的生产要素由农村向城市流动和集中,在城市体系不断升级的同时,农村的生产方式、生活方式逐渐与城市接轨、最终实现城乡一体化的过程。从以上定义可以看出,城市化是在经济增长的前提下,社会全面进步、城乡和谐发展、居民生活质量稳步提高的过程,是从工业化走向现代化的必然选择。在城市化的过程中,往往伴随着城市地域规模的扩大和城市人口的增加,因此城市人口占总人口的比例成为衡量地区城市化水平的重要指标。尽管我国的城市化进程在改革开放后的20年间取得了巨大的成就,但城市化水平增长缓慢、城市化水平落后于工业化的水平的矛盾仍然十分突出。2004年我国城市化水平为41.8%,平均每年增加1.09个百分点。2004年我国工业化水平达到52.6%,城市化水平仍落后

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论