




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 3 3空间向量运算的坐标表示 一 二 三 思考辨析 一 向量加减法和数乘的坐标表示设a x1 y1 z1 b x2 y2 z2 则 1 a b x1 x2 y1 y2 z1 z2 即空间两个向量和的坐标等于它们对应坐标的和 2 a b x1 x2 y1 y2 z1 z2 即空间两个向量差的坐标等于它们对应坐标的差 3 a x1 y1 z1 r 即实数与空间向量数乘的坐标等于实数与向量对应坐标的乘积 4 若b 0 则a b a b x1 x2 y1 y2 z1 z2 r 5 设a x1 y1 z1 b x2 y2 z2 则 x2 x1 y2 y1 z2 z1 空间向量的坐标等于终点与起点对应坐标的差 一 二 三 思考辨析 名师点拨1 空间向量的坐标运算类似于平面向量的坐标运算 只是由二维变成了三维 所以空间向量的坐标运算与平面向量的坐标运算类似 2 理解共线向量定理的条件和结论 在用坐标表示时 要注意等价变形 3 已知a a1 a2 a3 b b1 b2 b3 若b1 b2 b3都不为0 则a b 一 二 三 思考辨析 做一做1 已知向量a 3 2 1 b 2 1 5 则a b a b 2a 3b 解析 a b 3 2 1 2 1 5 5 3 4 a b 3 2 1 2 1 5 1 1 6 2a 3b 2 3 2 1 3 2 1 5 6 4 2 6 3 15 0 1 17 答案 5 3 4 1 1 6 0 1 17 做一做2 已知a 1 5 1 b 2 3 5 则使 ka b a 3b 成立的k的值为 解析 ka b k 2 5k 3 k 5 a 3b 1 3 2 5 3 3 1 3 5 7 4 16 ka b a 3b 一 二 三 思考辨析 二 数量积的坐标表示设a x1 y1 z1 b x2 y2 z2 则a b x1x2 y1y2 z1z2 空间两个向量的数量积等于它们对应坐标的乘积之和 做一做3 已知a 2 5 3 b 4 2 x 且a b 0 则x a 4b 6c 8d 6解析 a b 2 4 5 2 3x 0 x 6 答案 b 一 二 三 思考辨析 三 空间向量长度与夹角的坐标表示设a x1 y1 z1 b x2 y2 z2 则 3 a b x1x2 y1y2 z1z2 0 一 二 三 思考辨析 做一做4 若a 1 2 b 2 1 2 且a与b的夹角的余弦值为 则 等于 解析 因为a b 1 2 1 2 2 6 答案 c 一 二 三 思考辨析 判断下列说法是否正确 正确的在后面的括号内打 错误的打 3 空间向量a 1 1 1 是一个单位向量 4 若a b为空间向量 则 a b a b a2 b2 探究一 探究二 探究三 思维辨析 向量运算的坐标表示 例1 已知a 2 1 2 b 0 1 4 求a b a b 3a 2b a b 解 因为a 2 1 2 b 0 1 4 所以a b 2 1 2 0 1 4 2 0 1 1 2 4 2 2 2 a b 2 1 2 0 1 4 2 0 1 1 2 4 2 0 6 3a 2b 3 2 1 2 2 0 1 4 3 2 3 1 3 2 2 0 2 1 2 4 6 3 6 0 2 8 6 5 2 a b 2 1 2 0 1 4 2 0 1 1 2 4 0 1 8 7 探究一 探究二 探究三 思维辨析 反思感悟空间向量的坐标运算方法1 在运算中注意相关公式的灵活运用 如 a b a b a2 b2 a 2 b 2 a b a b a b 2等 2 进行向量坐标运算时 可以先代入坐标再运算 也可先进行向量式的化简再代入坐标运算 如计算 2a b 既可以利用运算律把它化成 2 a b 也可以先求出2a b后 再求数量积 计算 a b a b 既可以先求出a b a b后 再求数量积 也可以把 a b a b 写成a2 b2后计算 探究一 探究二 探究三 思维辨析 变式训练1已知在空间直角坐标系中 a 1 2 4 b 2 3 0 c 2 2 5 解 1 因为a 1 2 4 b 2 3 0 c 2 2 5 探究一 探究二 探究三 思维辨析 探究一 探究二 探究三 思维辨析 空间向量的平行与垂直 例2 设向量a 1 x 1 x b 1 x2 3x x 1 求满足下列条件时 实数x的值 1 a b 2 a b 解 1 当x 0时 a 1 0 1 b 1 0 1 a b 满足a b 当x 1时 a 1 1 0 b 0 3 2 不满足a b x 1 当x 0 且x 1时 综上所述 当x 0或x 2时 a b 探究一 探究二 探究三 思维辨析 2 a b a b 0 1 x 1 x 1 x2 3x x 1 0 1 x2 3x2 1 x2 0 反思感悟要熟练掌握向量平行和垂直的条件 借助此条件可将立体几何中的平行垂直问题转化为向量的坐标运算 在应用坐标形式下的平行条件时 一定注意结论成立的前提条件 在条件不明确时要分类讨论 探究一 探究二 探究三 思维辨析 变式训练2已知向量a 2 4 5 b 3 x y 若a b 求x y的值 解 a b a b 探究一 探究二 探究三 思维辨析 空间向量长度与夹角的坐标表示 例3 在长方体oabc o1a1b1c1中 oa 2 ab 3 aa1 2 e是bc的中点 建立空间直角坐标系 用向量方法解决下列问题 1 求直线ao1与b1e所成角的余弦值 2 作o1d ac于点d 求点o1到点d的距离 解 建立如图所示的空间直角坐标系 探究一 探究二 探究三 思维辨析 1 由题意得a 2 0 0 o1 0 0 2 b1 2 3 2 e 1 3 0 探究一 探究二 探究三 思维辨析 反思感悟当题中的几何体为正方体 长方体 直三棱柱等时 常选择建立空间直角坐标系 利用向量的坐标运算来解决有关长度 夹角 平行或垂直等问题 有时也可以不建系 利用基底来求解 但比较麻烦 探究一 探究二 探究三 思维辨析 变式训练3在棱长为1的正方体abcd a1b1c1d1中 e f分别是d1d bd的中点 g在棱cd上 且cg cd h为c1g的中点 求解下列问题 1 求证 ef b1c 3 求fh的长 解 如图 建立空间直角坐标系d xyz d为坐标原点 探究一 探究二 探究三 思维辨析 探究一 探究二 探究三 思维辨析 忽视两个向量夹角为锐角 钝角 的条件致误 典例 已知a 5 3 1 b 若a与b的夹角为锐角 求实数t的取值范围 易错分析 由a与b的夹角为锐角 得到a b 0 但当a b 0时 a与b的夹角不一定为锐角 还可能是共线同向 夹角为0 解题时容易忽视这个条件 导致扩大了参数的范围 探究一 探究二 探究三 思维辨析 纠错心得空间向量a b夹角为锐角的充要条件是 a b 0 且a b不同向 a b夹角为钝角的充要条件是 a b 0 且a b不反向 如果在求解过程中 忽视两个向量共线的情况 就有可能扩大参数的取值范围 导致错误 探究一 探究二 探究三 思维辨析 变式训练已知a 3 2 3 b 1 x 1 1 且a与b的夹角为钝角 则x的取值范围是 解析 a与b的夹角为钝角 a b 0 3 1 2 x 1 3 1 0 1234 1 已知a 1 0 1 b 1 2 2 c 2 3 1 那么向量a b 2c a 0 1 2 b 4 5 5 c 4 8 5 d 2 5 4 解析 a b 2c 1 0 1 1 2 2 2 2 3 1 4 8 5 答案 c 1234 2 已知a 1 0 2 b 6 2 1 2 若a b 则 与 的值为 解析 因为a b 所以b ka 即k 1 0 2 6 2 1 2 所以 1234 3 已知向量a 1 1 0 b 1 0 2 且ka b与2a b互相垂直 则k的值是 解析 a 1 1 0 b 1 0 2 且ka b与2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 交通银行2025石嘴山市笔试英文行测高频题含答案
- 建设银行2025营口市秋招结构化面试经典题及参考答案
- 2025年3D打印的3D打印应用
- 2025大数据分析在体育训练中的应用
- 交通银行2025扬州市秋招群面案例总结模板
- 2025养老金融行业市场分析与发展
- 2025行业绿色技术发展前景
- 工商银行2025上海市秋招半结构化面试题库及参考答案
- 中国银行2025金昌市秋招笔试英语题专练及答案
- 邮储银行2025雅安市数据分析师笔试题及答案
- 红领巾观察题目及答案
- DLT5210.1-2021电力建设施工质量验收规程第1部分-土建工程
- 江西省第二届职业技能大赛智慧安防技术赛项-模块B-公开样题
- 劳保用品公司管理制度
- 2023-2024学年江苏省苏州市高三(上)期初调研物理试题及答案
- 抗凝剂皮下注射技术临床实践指南
- T/CNFAGS 7-2023天然气、焦炉气制合成氨、尿素行业清洁生产水平分级标准(大气污染物)
- 2025-2030年中国四轮定位仪行业市场现状供需分析及投资评估规划分析研究报告
- 反窃查违专项培训实务
- 小学四年级上册语文学历案 教学设计
- NCCN卵巢癌指南2025第1版解读课件
评论
0/150
提交评论