



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.4.1基本不等式的证明(1)教学目标:一、知识与技能1探索并了解基本不等式的证明过程,体会证明不等式的基本思想方法;2会用基本不等式解决简单的最大(小)值问题;3学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“”取等号的条件是:当且仅当这两个数相等;4理解两个正数的算术平均数不小于它们的几何平均数的证明以及它的几何解释二、过程与方法1.通过实例探究抽象基本不等式;2.本节学习是学生对不等式认知的一次飞跃要善于引导学生从数和形两方面深入地探究不等式的证明,从而进一步突破难点变式练习的设计可加深学生对定理的理解,并为以后实际问题的研究奠定基础两个定理的证明要注重严密性,老师要帮助学生分析每一步的理论依据,培养学生良好的数学品质 三、情感、态度与价值观1通过本节的学习,体会数学来源于生活,提高学习数学的兴趣;2培养学生举一反三的逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力教学重点:应用数形结合的思想理解不等式,并从不同角度探索不等式的证明过程教学难点:理解基本不等式等号成立条件及“当且仅当时取等号”的数学内涵 教学方法:先让学生观察常见的图形,通过面积的直观比较抽象出基本不等式;从生活中实际问题还原出数学本质,可积极调动学生的学习热情;定理的证明要留给学生充分的思考空间,让他们自主探究,通过类比得到答案 教学过程:一、问题情景1.提问:与哪个大? 2.基本不等式的几何背景:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客你能在这个图案中找出一些相等关系或不等关系吗?(教师引导学生从面积的关系去找相等关系或不等关系)二、学生活动问题1我们把“风车”造型抽象成上图在正方形中有4个全等的直角三角形设直角三角形的长为,那么正方形的边长为多少?面积为多少呢?生答:.问题2那4个直角三角形的面积和呢?生答问题3好,根据观察4个直角三角形的面积和正方形的面积,我们可得容易得到一个不等式,.什么时候这两部分面积相等呢?生答:当直角三角形变成等腰直角三角形,即时,正方形efgh变成一个点,这时有.三、建构数学1重要不等式:一般地,对于任意实数 ,我们有,当且仅当时,等号成立问题4:你能给出它的证明吗?(学生尝试证明后口答,老师板书)证明:所以 注意强调:当且仅当时, 注意:(1)等号成立的条件,“当且仅当”指充要条件;(2) 公式中的字母和既可以是具体的数字,也可以是比较复杂的变量式,因此应用范围比较广泛 问题5:将降次为,降次为,则由这个不等式可以得出什么结论?2基本不等式:对任意正数,有当且仅当时等号成立(学生讨论回答证明方法)证法1:当且仅当即时,取“”证法2:要证,只要证,只要证,只要证因为最后一个不等式成立,所以成立,当且仅当即时,取“=”号证法3:对于正数有, 说明: 把和分别叫做正数的算术平均数和几何平均数,上述不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数 注意:(1)基本不等式成立的条件是:;(2)不等式证明的三种方法:比较法(证法1)、分析法(证法2)、综合法(证法3);(图1)(3)的几何解释:(如图1)以为直径作圆,在直径上取一点, 过作弦,则,从而,而半径基本不等式几何意义是:“半径不小于半弦”;(4)当且仅当时,取“”的含义:一方面是当时取等号,即;另一方面是仅当时取等号,即;(5)如果,那么(当且仅当时取“”);(6)如果把看作是正数、的等差中项,看作是正数,的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项四、数学运用 1例题例1 设为正数,证明下列不等式成立:(1);(2).证明(1)为正数,也为正数,由基本不等式得原不等式成立(2)均为正数,由基本不等式得,原不等式成立例2 已知为两两不相等的实数,求证:.证明为两两不相等的实数,以上三式相加:,所以,例3 已知都是正数,求证.证明由都是正数,得: , ,即.2练习(1)已知都是正数,求证: ;(2)已知都是正数,求证:;(3)思考题:若,求的最大值.五、要点归纳与方法小结本节课学习了以下内容:1算术平均数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025福建三明市城市建设发展集团有限公司公开招聘工作人员18人的考前自测高频考点模拟试题及答案详解1套
- 2025福建泉州市德化县公办学校专项招聘编制内新任教师19人(二)考前自测高频考点模拟试题及一套参考答案详解
- 2025河南新乡新华医院新乡市中西医结合医院招聘考前自测高频考点模拟试题及答案详解(网校专用)
- 2025江苏苏州凌晔进出口有限公司招聘7人考前自测高频考点模拟试题及一套参考答案详解
- 2025杭州大有供电服务有限公司招聘115人模拟试卷及答案详解(新)
- 2025国家文物局考古研究中心招聘专业技术人员11人模拟试卷及参考答案详解一套
- 2025年福建省三明市尤溪县总医院招聘10人考前自测高频考点模拟试题有答案详解
- 2025辽宁沈阳盛京资产管理集团有限公司所属子公司沈阳对外事务服务中心有限公司招聘1人模拟试卷有完整答案详解
- 2025黑龙江黑河市北安市乡村医生招聘21人考前自测高频考点模拟试题及答案详解(有一套)
- 2025年春季中国光大银行济南分行校园招聘(滨州有岗)考前自测高频考点模拟试题附答案详解(模拟题)
- 2025年中考语文作文中考12大主题作文模板!-分步详解+例文示范
- 2025年北京市房山区九年级初三一模英语试卷(含答案)
- 餐饮连锁稽核管理制度
- 详细操作说明书及维修指导手册
- 中国精神障碍防治指南课件
- 《中国的经济发展概览》课件
- 2024重组胶原蛋白行业白皮书
- 2024N-Jet工法超高压喷射注浆技术规程
- 高职高考数学复习第五章数列5-2等差数列课件
- 矿泉水卫生管理制度
- 慢性肺源性心脏病的护理(内科护理学第七版)
评论
0/150
提交评论