已阅读5页,还剩65页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题10:三角形四边形存在性问题三、解答题1. (2002年江苏连云港10分)已知:抛物线与x轴交于A(k,0)(k0)、B(3,0)两点,与y轴正半轴交于C点且tanCAO=3。(1)求此抛物线的解析式(系数中可含字母k);(2)设点D(0,t)在x轴下方,点E在抛物线上,若四边形ADEC为平行四边形,试求t与k的函数关系式;(3)题(2)中的平行四边形ADEC能否为矩形?若能,求出D点坐标;若不能,请说明理由。2. (2003年江苏淮安12分)如图,矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(3,0)、(0,5)(1)直接写出B点坐标;(2)若过点C的直线CD交AB边于点D,且把矩形OABC的周长分为1:3两部分,求直线CD的解析式;(3)在(2)的条件下,试问在坐标轴上是否存在点E,使以C、D、E为顶点的三角形与以B、C、D为顶点的三角形相似?若存在,请求出E点坐标;若不存在,请说明理由3. (2003年江苏连云港12分)如图,抛物线与x轴交于点A(x1,0)、B(x2,0)(x10x2),与轴交于点C(0,2),若OB=4OA,且以AB为直径的圆过C点(1)求此抛物线的解析式;(2)若D点在此抛物线上,且ADBC, 求D点的坐标;在x轴下方,此抛物线上是否存在点P,使得APD的面积与四边形ACBD的面积相等?若存在,求出P点坐标;若不存在,请说明理由.由上面知D点的坐标为(5,3)、A点的坐标(1,0)、B点的坐标为(4,0)、C点的坐标为(0,2),设直线PD为,则,解得。4. (江苏省泰州市2003年12分)已知:如图,抛物线与轴的两个交点M、N在原点的两侧,点N在点M的右边,直线经过点N,交轴于点F.来源:学*科*网求这条抛物线和直线的解析式.(4分)又直线与抛物线交于两个不同的点A、B,与直线交于点P,分别过点A、B、P作x轴的垂线,垂足分别是C、D、H.试用含有k的代数式表示;(2分)求证: .(2分)在的条件下,延长线段BD交直线于点E,当直线绕点O旋转时,问是否存在满足条件的k值,使PBE为等腰三角形?若存在,求出直线的解析式;若不存在,请说明理由.(4分)证明:直线y2与y1交于P点,2x6=kx,即,H点的坐标为(,0)。OH=, 。【分析】(1)可先根据直线y1的解析式求出N点的坐标,然后将其代入抛物线的解析式中即可求出m的值,然后根据M、N在原点两侧,即3(m-1)0,将不合题意的m的值舍去,即可求出抛物线和直线的解析式;(2)联立个相交函数的解析式,求出C,D,H三点的横坐标,然后用根与系数的5. (江苏省常州市2004年9分)仔细阅读下列材料,然后解答问题。某商场在促销期间规定:商场内所有商品按标价的80%出售。同时当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:消费金额(元)的范围获得奖卷的金额(元)3060100130根据上述促销方法,顾客在商场内购物可以获得双重优惠。例如,购买标价为450元的商品,则消费金额为元,获得的优惠额为元。设购买该商品得到的优惠率=购买商品获得的优惠额商品的标价。(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?6. (江苏省苏州市2004年8分)如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(3,0),(3,4)。动点M、N分别从O、B同时出发,以每秒1个单位的速度运动。其中,点M沿OA向终点A运动,点N沿BC向终点C运动。过点N作NPAC,交AC于P,连结MP。已知动点运动了x秒。(1)P点的坐标为( , );(用含x的代数式表示)(2)试求MPA面积的最大值,并求此时x的值。(3)请你探索:当x为何值时,MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果。(3)延长NP交x轴于Q,则有PQOA。7. (江苏省泰州市2004年12分)抛物线()交轴于点A(1,0)、B(3,0),交轴于点C,顶点为D,以BD为直径的M恰好过点C.(1)求顶点D的坐标 (用的代数式表示) ;(2)求抛物线的解析式;(3)抛物线上是否存在点P使PBD为直角三角形?若存在,求出点P的坐标;若不存在,说明理由。若BDP90,设DP3的延长线交y轴于点N,过点D作DH轴于点H,由EDN HDB得,即8. (2004年江苏徐州12分)已知抛物线开口向下,与x轴交于A(x1,0)和B(x2,0)两点,其中x1x2(1)求m的取值范围;(2)若,求抛物线的解析式,并在给出的直角坐标系中画出这条抛物线;(3)设这条抛物线的顶点为C,延长CA交y轴于点D在y轴上是否存在点P,使以P、B、O为顶点的三角形与BCD相似?若存在,求出P点的坐标;若不存在,请说明理由令x=0,得y=1。点D的坐标是(0,1)。得m的取值范围。(2)因为,所以,即,解得或m=2,代入即可求得。来源:Z*xx*k.Com(3)由勾股定理和逆定理判断BCD是直角三角形,从而设存在点P(0,y),使以P、O、B为顶点的三角形与BCD相似,分BCDPOB和BCDBOP两种情况讨论。9. (江苏省常州市2006年10分)如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画O,P是O上一动点,且P在第一象限内,过点P作O的切线与轴相交于点A,与轴相交于点B。(1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由;(2)在O上是否存在一点Q,使得以Q、O、A、P为顶点的四边形时平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由。 PQOA, 轴。设轴于点H,在RtOHQ中,OQ=2,HQO=450, 10. (江苏省苏州市2006年8分)如图,直角坐标系中,已知点A(2,4),B(5,0),动点P从B点出发沿BO向终点O运动,动点Q从A点出发沿AB向终点B运动两点同时出发,速度均为每秒1个单位,设从出发起运动了(1)Q点的坐标为(,)(用含x的代数式表示)(2)当x为何值时,APQ是一个以AP为腰的等腰三角形? (3)记PQ的中点为G请你探求点G随点P,Q运动所形成的图形,并说明理由.11. (江苏省无锡市2006年9分)如图,在等腰梯形ABCD中,ABDC,AB8cm,CD2cm,AD6cm。点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止)设P、Q同时出发并运动了t秒。(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存在,求出这样的t的值,若不存在,请说明理由。【答案】解:(1)过D作DEAB于E,过C作CFAB于F,如图1。在RtQDH中,QDH=60,DQ=t2,。由题意知,S四边形PBCQ,12. (2006江苏镇江10分)如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画O,P是O上一动点,且P在第一象限内,过点P作O的切线与轴相交于点A,与轴相交于点B。(1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由;(2)在O上是否存在一点Q,使得以Q、O、A、P为顶点的四边形时平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由。【答案】解:(1)线段AB长度的最小值为4。 理由如下: 连接OP, AB切O于P,OPAB。 取AB的中点C,则AB=2OC 。当OC=OP=2时,OC最短,即AB最短。此时AB=4。 (2)设存在符合条件的点Q,设四边形APOQ为平行四边形 若OA是对角线, 如图,13. (江苏省常州市2007年10分)已知A与B是反比例函数图象上的两个点(1)求的值;(2)若点C,则在反比例函数图象上是否存在点D,使得以A,B,C,D四点为顶点的四边形为梯形?若存在,求出点D的坐标;若不存在,请说明理由A,解得。AD的解析式为。由,解得,。D(6,)。长度,又能判别平行。14. (江苏省苏州市2007年8分)设抛物线与x轴交于两个不同的点A(一1,0)、B(m,0),与y轴交于点C.且ACB=90 (1)求m的值和抛物线的解析式; (2)已知点D(1,n )在抛物线上,过点A的直线交抛物线于另一点E若点P在x轴上,以点P、B、D为顶点的三角形与AEB相似,求点P的坐标 (3)在(2)的条件下,BDP的外接圆半径等于_ EAH=DBF=450。DBH=1350,900EBA1350。 则点P只能在点B的左侧,有以下两种情况(如图): 若BDP1EAB,则,标为S()。 则, ,解得。 此时,BDP的外接圆半径为。15. (江苏省苏州市2008年9分)如图,抛物线与轴的交点为M、N直线与轴交于P(2,0)与y轴交于C,若A、B两点在直线上且AO=BO=,AOBOD为线段MN的中点。OH为RtOPC斜边上的高 (1)OH的长度等于 ;k= ,b= (2)是否存在实数a,使得抛物线上有一点E满足以D、N、E为顶点的三角形与AOB相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式同时探索所求得的抛物线上是否还有符合条件的E点(简要说明理由)并进一步探索对符合条件的每一个E点,直线NE与直线AB的交点G是否总满足PBPG10,写出探索过程当时,若抛物线上还有满足条件的E点,不妨设为,那么只有可能DN是以DN为斜边的等腰直角三角形,此时(,),代入不成立,所以点不在抛物线上。因此,抛物线上没有满足条件的其它E点。当时,若抛物线上还有满足条件的E点,不妨16. (江苏省常州市2010年9分)如图,已知二次函数的图像与轴相交于点A、C,与轴相较于点B,A(),且AOBBOC。(1)求C点坐标、ABC的度数及二次函数的关系式;(2)在线段AC上是否存在点M()。使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出的值;若不存在,请说明理由。 又CA=,CP=CO=4,解得CM5。 1。 17. (2010年江苏淮安12分)如(a)图,在平面直角坐标系中,点A坐标为(12,0),点B坐标为(6,8),点C为OB的中点,点D从点O出发,沿OAB的三边按逆时针方向以2个单位长度秒的速度运动一周 (1)点C坐标是( , ),当点D运动8.5秒时所在位置的坐标是( , ); (2)设点D运动的时间为t秒,试用含t的代数式表示OCD的面积S,并指出t为何值时,S最大; (3)点E在线段AB上以同样速度由点A向点B运动,如(b)图,若点E与点D同时出发,问在运动5秒钟内,以点D,A,E为顶点的三角形何时与OCD相似(只考虑以点AO为对应顶点的情况):当t为3.5秒或秒时两三角形相似。【考点】一次函数综合题,一次函数最值,双动点问题,直线上点的坐标与方程的关系,勾18. (江苏省苏州市2010年9分)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图、图中,;图中,图是刘卫同学所做的一个实验:他将的直角边与的斜边重合在一起,并将沿方向移动在移动过程中,、两点始终在边上(移动开始时点与点重合) (1)在沿方向移动的过程中,刘卫同学发现:、两点间的距离逐渐 (填“不变”、“变大”或“变小”) (2)刘卫同学经过进一步地研究,编制了如下问题: 问题:当移动至什么位置,即的长为多少时,、的连线与平行? 问题:当移动至什么位置,即的长为多少时,以线段、的长度为三边长的三角形是直角三角形? 问题:在的移动过程中,是否存在某个位置,使得?如果存在,求出的长度;如果不存在,请说明理由 请你分别完成上述三个问题的解答过程在中,=4,=124。 (2)问题:连结,设,在中应用勾股定理,求出这时的值,从而得到的长。 问题:以线段、的长度为三边长的三角形是否是直角三角形,根据勾股定理的逆定理,只需对三边是否能组成直角三角形进行讨论,分为斜边、为斜边和为斜边三种情况讨论。 问题:假设存在这样的位置,使得,由知条件进行推理,得出矛盾的结论。否存在性问题属于中考题常设置的一种题型,此类问题常先假设结论存在,利用已若推情合理,则存在;否则,则不存在。19. (2010年江苏宿迁12分)已知抛物线交x轴于A(1,0)、B(3,0)两点,交y轴于点C,其顶点为D (1)求b、c的值并写出抛物线的对称轴;(2)连接BC,过点O作直线OEBC交抛物线的对称轴于点E求证:四边形ODBE是等腰梯形;(3)抛物线上是否存在点Q,使得OBQ的面积等于四边形ODBE的面积的?若存在,求点Q的坐标;若不存在,请说明理由(2,2),BOE=OBD=450 。OEBD。四边形ODBE是梯形。(3)首先求出四边形ODBE的面积,再利用求出y,然后把y的值代入抛物线解析式中,求x值。20. (江苏省泰州市2010年12分)如图,二次函数的图象经过点D,与x轴交于A、B两点求的值;如图,设点C为该二次函数的图象在x轴上方的一点,直线AC将四边形ABCD的面积二等分,试证明线段BD被直线AC平分,并求此时直线AC的函数解析式;设点P、Q为该二次函数的图象在x轴上方的两个动点,试猜想:是否存在这样的点P、Q,使AQPABP?如果存在,请举例验证你的猜想;如果不存在,请说明理由(图供选用),解得。21. (2010年江苏徐州10分)如图,已知二次函数y=的图象与y轴交于点A,与x轴交于B、C两点,其对称轴与x轴交于点D,连接AC(1)点A的坐标为_ ,点C的坐标为_ ;(2)线段AC上是否存在点E,使得EDC为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)点P为x轴上方的抛物线上的一个动点,连接PA、PC,若所得PAC的面积为S,则S取何值时,相应的点P有且只有2个?【答案】解:(1)A(0,4),C(8,0)。(2),其对称轴为x=3。 D(3,0),CD=5。 设直线AC对应的函数关系式为,则。时,相应的点P有且只有两个。22. (2011江苏常州10分)在平面直角坐标系XOY中,直线过点且与轴平行,直线过点且与轴平行,直线与直线相交于点P。点E为直线上一点,反比例函数(0)的图像过点E与直线相交于点F。若点E与点P重合,求的值;连接OE、OF、EF。若2,且OEF的面积为PEF的面积的2倍,求E点的坐标;是否存在点E及轴上的点M,使得以点M、E、F为顶点的三角形与PEF全等?若存在,求E点坐标;若不存在,请说明理由。SOEF2SPEF, ,解得k6或k2,k2时,E、F重合,舍去。 k6, E点坐标为:(3,2)。(3)存在点E及y轴上的点M,使得MEFPEF当k2时,如图2,只可能是MEFPEF,作FHy轴于H比,用表示相关各点的坐标并表示相关线段的长,再利用勾股定理求出。要注意应根据点P、E、F三点位置分k2和k2两种情况讨论。23. (江苏省苏州市2011年10分)已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C点D是抛物线的顶点 (1)如图,连接AC,将OAC沿直线AC翻折,若点O的对应点O恰好落在该抛物线的对称轴上,求实数a的值; (2)如图,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形)”若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程; (3)如图,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正来源:Zxxk.Com数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由 如图,设该抛物线的对称轴与轴的交点为点M,则由OA=2得AM=1。 由题意,得OA=OA=2,OA=2AM,OAM=600。 OAC=CAO=600。OC=,即。 (2)若点P是边EF或边FG上的任意一点,结论仍然成立。PB、PC、PD能构成一个平行四边形。【考点】二次函数综合题,,图形的翻转,含300角的直角三角形的性质,平行四边形的判定,解一元二次方程。【分析】(1)先利用点在抛物线上,点的坐标满足方程和含300角的直角三角形中300角所对的直角边是斜边一半的性质,求出点A、B、C的坐标,再求出a。(2)分点P在边EF或边FG上两种情况比较四线段的长短来得出结论。(3)因为点A、B是抛物线与X轴的交点,点P在抛物线对称轴上,所以PA=PB。要PA,PB,PC,PD构成一个平行四边形的四条边,只要PC=PD,,从而推出a。24. (江苏省无锡市2011年10分)如图,已知O(0,0)、A(4,0)、B(4,3)动点P从O点出发,以每秒3个单位的速度,沿OAB的边OA、AB、BO作匀速运动;动直线l从AB位置出发,以每秒1个单位的速度向轴负方向作匀速平移运动若它们同时出发,运动的时间为t秒,当点P运动到O时,它们都停止运动(1)当P在线段OA上运动时,求直线l与以P为圆心、1为半径的圆相交时t的取值范围; (2)当P在线段AB上运动时,设直线l分别与OA、OB交于C、D,试问:四边形CPBD是否可能为菱形?若能,求出此时t的值;若不能,请说明理由,并说明如何改变直线l的出发时间,使得四边形CPBD会是菱形25. (2011年江苏徐州12分)如图,已知二次函数的图象与轴交于A、B两点,与轴交于点P,顶点为C()。来源:学*科*网(1)求此函数的关系式;(2)作点C关于轴的对称点D,顺次连接A、C、B、D。若在抛物线上存在点E,使直线PE将四边形ACBD分成面积相等的两个四边形,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点F,使得PEF是以P为直角顶点的直角三角形?若存在,求出点P的坐标及PEF的面积;若不存在,请说明理由。【答案】解:(1)函数的图象顶点为C(), 函数关系式可表示为。 (2)设直线PE的函数关系式为。 由题意知四边形ACBD是菱形,故直线PE必经过菱形的中心M。由P(0, 1),M(1, 0)得: ,解得。 直线PE的函数关系式为。 联列方程组,得:解之,得 。得点E的坐标为(3, 2)。 (3)假设存在这样的点F,设。来源:学.科.网Z.X.X.K , OMPFPG。 又POMFGP,POMFGP。 又OM1,OP1,GPGF,即。 解得。 点F的坐标为(1,2)。 以上各步皆可逆,故点F(1,2)即为所求。26. (2011年江苏盐城12分)如图,已知一次函数与正比例函数的图象交于点A,且与轴交于点B.(1)求点A和点B的坐标;(2)过点A作AC轴于点C,过点B作直线l轴动点P从点O出发,以每秒1个单位长的速度,沿OCA的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交轴于点R,交线段BA或线段AO于点Q当点P到达点A时,点P和直线l都停止运动在运动过程中,设动点P运动的时间为t秒.当t为何值时,以A、P、R为顶点的三角形的面积为8?是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由当APAQ时,7t (t4),解得t 。当AQPQ时,AEPE,即AE AP,得t4 (7t),解得t 5。当APPQ时,过P作PFAQ于F,AF AQ (t4)。27. (2011江苏镇江10分)在平面直角坐标系XOY中,直线过点且与轴平行,直线过点且与轴平行,直线与直线相交于点P。点E为直线上一点,反比例函数(0)的图像过点E与直线相交于点F。若点E与点P重合,求的值;连接OE、OF、EF。若2,且OEF的面积为PEF的面积的2倍,求E点的坐标;是否存在点E及轴上的点M,使得以点M、E、F为顶点的三角形与PEF全等?若存在,求E点坐标;若不存在,请说明理由。【答案】解:(1)直线过点A(1,0)且与轴平行,直线过点B(0。2)且与轴在RtMBE中,由勾股定理得,EM2EB2MB2, (1 )2( )2()2解得k ,此时E点坐标为( ,2)。当k2时,如图3,只可能是MFEPEF,作FQy轴于Q,FQMMBE得, 。FQ1,EMPFk2,FMPE 1, ,BM228. (2012江苏苏州10分)如图,已知抛物线(b是实数且b2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C. 点B的坐标为 ,点C的坐标为 (用含b的代数式表示);请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;请你进一步探索在第一象限内是否存在点Q,使得QCO、QOA和QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.QOA与OQC相似,只能QCO=90或OQC=90。再分别讨论求出满足题意Q的坐标即可。29. (2012江苏泰州12分)如图,已知直线l与O相离,OAl于点A,OA=5,OA与O相交于点P,AB与O相切于点B,BP的延长线交直线l于点C(1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=,求O的半径和线段PB的长;(3)若在O上存在点Q,使QAC是以AC为底边的等腰三角形,求O的半径r的取值范围【答案】解:(1)AB=AC。理由如下:连接OB。AB切O于B,OAAC,OBA=OAC=90。OBP+ABP=90,ACP+CPB=90。OP=OB,OBP=OPB。OPB=APC,ACP=ABC。AB=AC。(2)延长AP交O于D,连接BD,设圆半径为r,则由OA=5得,OP=OB=r,PA=5r。又PC=, 。由(1)AB=AC得,解得:r=3。AB=AC=4。PD是直径,PBD=90=PAC。DPB=CPA,DPBCPA。,即,解得。 (3)作线段AC的垂直平分线MN,作OEMN,30. (2012年江苏扬州12分)已知抛物线yax2bxc经过A(1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由当m6时,M、A、C三点共线,构不成三角形,不合题意,故舍去。综上可知,符合条件的M点,且坐标为(1,),(1,),(1,1),(1,0)。31. (2013年江苏常州10分)在平面直角坐标系xOy中,一次函数y=2x+2的图象与x轴交于A,与y轴交于点C,点B的坐标为(a,0),(其中a0),直线l过动点M(0,m)(0m2),且与x轴平行,并与直线AC、BC分别相交于点D、E,P点在y轴上(P点异于C点)满足PE=CE,直线PD与x轴交于点Q,连接PA(1)写出A、C两点的坐标;(2)当0m1时,若PAQ是以P为顶点的倍边三角形(注:若HNK满足HN=2HK,则称HNK为以H为顶点的倍边三角形),求出m的值;(3)当1m2时,是否存在实数m,使CDAQ=PQDE?若能,求出m的值(用含a的代数式表示);若不能,请说明理由(3)如图2所示,利用相似三角形,将已知的比例式转化为:,据此列方程求出m的值。32. (2013年江苏苏州9分)如图,点O为矩形ABCD的对称中心,AB10cm,BC12cm点E,F,G分别从A,B,C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cms,点G的运动速度为1.5cms当点F到达点C(即点F与点C重合)时,三个点随之停止运动在运动过程中,EBF关于直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论