免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一种结构简单性能优良的AGC电路(图)短波数字通信系统中接收机的AGC电路采用AD603可变增益放大器结合简单的AGC控制电路来实现,具有较高的增益,动态范围达70dB,频带宽度为90MHz,且电路结构相当简单。短波接收机在接收信号时,由于电离层的变化、衰落和接收信号条件等不同,其输入端信号电平在很大范围内变化。而接收机的输出功率是随外来信号的大小 而变化的,接收机的输出端会出现强弱非常悬殊的信号功率。为此,短波接收机中非常强调自动增益控制(AGC)电路。AGC电路是一种在输入信号幅度变化很 大的情况下,使输出信号幅度保持恒定或仅在较小范围内变化的自动控制电路。AGC的基本原理是产生一个随输入电平而变化的直流AGC电压,利用AGC电压 去控制某些放大部件(如中放)的增益,使接收机总增益按照一定规律而变化。AGC电路主要由控制电路和被控电路两部分组成。控制电路就是AGC直流电压的 产生部分,被控电路的功能是按照控制电路所产生的变化着的控制电压来改变接收机的增益。目前,在短波接收机中放大器增益的控制方法主要有两种。一种是改变放大器本身的参数,使增益发生变化,典型的是采用双栅场效应管,通过改变其中某一 栅的直流偏置电压使增益发生变化;另一种是在放大器级间插入可变衰减器,控制衰减量,使增益发生变化,典型的是各种集成的可变增益放大器,本文讨论的 AGC电路就是采用ADI公司的AD603可变增益放大器结合简单的AGC控制电路来实现的。要求增益大于50dB,AGC动态范围大于65dB,输出信 号电平基本稳定在-10dBm。AD603工作原理表1:AD603引脚功能AD603是低噪、90MHz带宽增益可调的集成运放,如增益用分贝表示,则增益与控制电压成线性关系。管脚间的连接方式决定了可编程的增益范围,增益在 -11+30dB时的带宽为90MHz,增益在+9+41dB时具有9MHz带宽,改变管脚间的连接电阻,可使增益处在上述范围内。该集成电路可应用 于射频自动增益放大器、视频增益控制、A/D转换量程扩展和信号测量系统,简化原理框图如图1所示。图1:AD603的原理框图AD603由无源输入衰减器、增益控制界面和固定增益放大器三部分组成。图中加在梯型网络输入端(VINP)的信号经衰减后,由固定增益放大器输 出,衰减量是由加在增益控制接口的电压决定。增益的调整与其自身电压值无关,而仅与其差值VG有关,由于控制电压GPOS/GNEG端的输入电阻高达 50M,因而输入电流很小,致使片内控制电路对提供增益控制电压的外电路影响减小。以上特点很适合构成程控增益放大器。图1中的“滑动臂”从左到右是可 以连接移动的。当VOUT和FDBK两管脚的连接不同时,其放大器的增益范围也不一样。当脚5和脚7短接时,AD603的增益为40Vg+10,这时的增益范围在 -1030dB,本文的设计就是这样应用的。当脚5和脚7断开时,其增益为40Vg+30,这时的增益范围为1050dB。如果在5脚和7脚接上电阻,其增益范围将处于上述两者之间。AGC电路工作原理及增益的分配和计算 AGC电路工作原理选用AD603作为主放大器,两片AD603采用顺序级联形式,充分发挥每一片AD603的增益控制功能。AGC检波由9018完成,9018同时送出AGC控制电压。完整的放大器及AGC电路如图2所示。经两级AD603放大的信号,一路由J2送入下一级信号通道,另一路则由C10输入到9018用于AGC检波。9018的发射极PN结完成AGC检波,并由集电极经电容CAGC滤波后送出AGC控制电压VAGC。输入信号增大时,9018的基极瞬时电流也增大,相应的集电极电流也跟着增大,从而R7两端的瞬时压降也增大,则集电极瞬时电压减小,经滤波后得到 的VAGC也相应减小;同样,输入信号减小时,VAGC则会增大,即VAGC与输入信号的强度成反比,符合AGC电压反向控制要求。AD603的2脚对地压降固定,1脚对地压降即为VAGC,从而1、2脚的电压差V12受VAGC的控制。AD603的增益可表示为:G= 40V12+10。由此可见,随着VAGC的增加,V12也增加,则AD603的增益变大;相反,若VAGC减小,V12也减小,则AD603的增益变 小,从而使两级AD603的输出恒定在某个信号强度上。AGC时间常数的调整可以通过改变CAGC的容值来实现。 AGC增益的分配和计算两片AD603采用顺序级联模式有利于控制精度和信噪比的提高。而顺序级联模式要求在放大信号时先启用第一片AD603的增益,用尽后再用第二片的 增益。由AD603的增益计算公式可知,当V12在-500500mV之间时,其增益在-1030dB范围内变化,则两片AD603的V12之间应有 1V的电压差,反应在图2中,即两片AD603的2脚之间有1V的压降。图2:放大器及AGC电路根据实际设计应留有一定的余量。将第一片AD603的增益范围定为 -630dB,则相应的V12为-400500mV,而其2脚已固定在5.5V,故1脚的控制电压即VAGC应为5.16V。第二片AD603的增 益范围定为-1024dB,则相应的V12为-500350mV,而其2脚已固定在6.5V,故1脚的控制电压即VAGC应为66.85V,两片顺 序级联后的总增益范围为-1654dB,如图3所示。图3:AGC增益分配情况由以上分析可知,当AGC控制电压VAGC从5.1V到6.85V变化时,两级AD603的总增益将从-16dB到54dB线性增加。现在需要做的 是调整9018的工作点,使得当输入信号适当变化时,能够从9018的集电极取出从5.1V到6.85V变化的AGC控制电压VAGC。由图2可以看出, VAGC的大小取决于R7的阻值和集电极电流的大小。在无信号输入时,调整9018的静态工作点,使9018发射极的PN结处于近似截止状态,并调整R7的阻值使得VAGC为6.85V,此时两级 AD603的增益全部放开,即54dB;当有信号输入,但其信号强度尚不能使9018发射极的PN结导通时,AGC处于失控状态,输出信号将随着输入信号 强度的增大而增大;当信号强度足以使9018发射极的PN结导通时,9018处于AGC检波状态,此时AGC开始起控,VAGC大约以25mV/dB的速 率下降,直至下降到5.1V。对应的两级AD603的增益也开始逐渐从54dB下降到-16dB,先是第二级AD603的增益逐渐从24dB下降到- 10dB,然后第一级AD603的增益也开始逐渐从30dB下降到-6dB。此时,AGC进入饱和点,输入信号强度再增大时,AGC已失去控制作用,输出 信号又将随着输入信号强度的增大而增大。这就是AGC的整个控制过程,即随着输入信号强度的不断增大,AGC将历经失控、开始起控、进入饱和、再次失控的 控制过程。 AGC起控点与饱和点的选取和计算AGC起控点与饱和点的选取应根据具体的应用来计算。假设要求信号经AGC放大后,其信号强度稳定在W(dBm),AGC增益范围为GaGb (dB),则AGC起控点电平(dBm)为W-Gb;AGC饱和点电平(dBm)为W-Ga。在应用中,要求信号经两级AD603的放大后,其信号强度基 本稳定在-10dBm,而AGC增益范围为-1654dB,因此AGC起控点电平应为-10-54=-64(dBm);AGC饱和点电平应为-10- (-16)=6(dBm)。故此AGC所能处理的信号的动态范围为-646dBm,共70dB。AGC起控点的调整可通过改变R5的阻值来实现。事实上,改变R5的阻值也就是调整9018发射极的PN结压降。此PN结用于AGC检波时,其压降 大约被偏置在500700mV之间。假设在工作过程中此PN结的瞬时压降为600mV时,AGC开始起控,又假设要求的AGC起控点电平为-30dBm (20mV),那么,可以通过调整R5的阻值使得此PN结被偏置在580mV,则当输入信号电平达到20mV时,此PN结的瞬时压降为600mV,AGC 开始起控。以上只是定性的近似分析,在实际电路的实现中,要根据测量结果,反复调整R5的阻值,才能满足AGC起控点的要求。当然,AGC起控点有一个下 限。就图2所示AGC控制电路来讲,其AGC控制下限取决于9018发射极PN结压降的调整精度,经实际测量,此值大约在100V(-76dBm)左 右。实验数据图4:AGC测试框图将整个电路按图4所示连接进行闭环测试。在测试过程中,通过调整HP-8920A的可变衰减器来改变输
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流服务师创新思维强化考核试卷含答案
- 2025年三明学院马克思主义基本原理概论期末考试模拟题附答案
- 口腔修复体制作师安全生产基础知识能力考核试卷含答案
- 搪瓷瓷釉制作工QC管理能力考核试卷含答案
- 燃气具制造工岗后竞赛考核试卷含答案
- 纤维板原料制备工安全教育竞赛考核试卷含答案
- 轧管工岗前创新应用考核试卷含答案
- 2024年湖北大学辅导员招聘备考题库附答案
- 2024年贵州轻工职业技术学院辅导员考试笔试题库附答案
- 2024年莱芜市特岗教师招聘考试真题题库附答案
- 2025年金蝶AI苍穹平台新一代企业级AI平台报告-
- 2025中国机械工业集团有限公司(国机集团)社会招聘19人笔试参考题库附答案
- 浅析煤矿巷道快速掘进技术
- 成人留置导尿标准化护理与并发症防控指南
- 2025年劳动关系协调师综合评审试卷及答案
- CIM城市信息模型技术创新中心建设实施方案
- 班级互动小游戏-课件共30张课件-小学生主题班会版
- 2025至2030全球及中国智慧机场建设行业发展趋势分析与未来投资战略咨询研究报告
- 2025年二级造价师《土建工程实务》真题卷(附解析)
- 智慧农业管理中的信息安全对策
- 2025年河南省康养行业职业技能竞赛健康管理师赛项技术工作文件
评论
0/150
提交评论