一种新型可光降解全塑水乳基软管包装功能材料.doc_第1页
一种新型可光降解全塑水乳基软管包装功能材料.doc_第2页
一种新型可光降解全塑水乳基软管包装功能材料.doc_第3页
一种新型可光降解全塑水乳基软管包装功能材料.doc_第4页
一种新型可光降解全塑水乳基软管包装功能材料.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.一种新型可光降解全塑水乳基软管包装功能材料本发明涉及一种新型可光降解全塑水乳基膏状物质用软管包装功能材料,其特征在于由下列组成物及重量百分比构成:聚乙烯树脂:45-60,改性碳酸钙:5-15,乙烯-乙酸乙烯酯共聚树脂:2-6,钛白粉:3-9,光降解助剂:2-7,聚乙烯蜡:1-4,钛酸酯偶联剂:3-5,助偶联剂:0.3-2,石蜡:2-6,硬脂酸锌:3-6,改性碳酸镁:5-15,荧光增白剂:0.3-2,白油:0.8-3,亚乙基双硬脂酰胺:0.3-1,乙烯-乙烯醇共聚物:1-5。本发明的优点是耐撕裂性、阻隔性、热封性、相容性具佳,全塑成分不含铝,便于回收重复利用,在受到自然光、氧、热的作用下,能快速降解。2.新型生物降解材料聚己酸内酯的理化性能研究摘要:对聚己酸内酯材料的理化性能测试结果显示其结构为(),为聚酯类聚合物。分析结果为半晶体,线性聚合物。平均分子量为万。抗压强度为,具有力学松驰和蠕变性能。密度为。材料软化点为,降低温度至室温后分钟,样品固化,呈乳白色晶料,证实为热塑性聚合物。 3.有关生物降解材料的新论点及发展动向近年来,可生物降解材料是人们关注的一个热点课题,文章和报道很多,但是多为新品种开发,合成制造方法,应用以及降解机理等。2004年德国应用化学国际版上(Angew chemIntEd,43,10781085)发表了一篇题为“Nature or Petrochemistry?Biologically Degradable Materials”文章,从宏观角度,论述此类材料发展背景以及随着科学技术进步,形成产业和占据市场后,从经济层面和社会层面应当考虑的一些问题。文章中对有市场前景的几类品种发展前景也作了预测。该文虽仍以聚合物材料为主体,但有不少新意,现摘出以供参考。 化学工业自19世纪下半叶以来所取得的进步和成就在很大程度上是由于将矿物原料作为合成的基础。从煤中制备的合成染料代替了天然染料,这种对光稳定的着色剂第一次进入广大人民群众生活。现在,以油气为代表的矿物原料是化学工业最重要的原料,超过90,仅次于能源和运输而居第三位。根据OECD组织成员国统计,能源占54,运输占35,化学工业占12(原料和加工用各为一半)。而在化学工业中,用作原料的油汽资源主要是转换成聚合物。过去50年中,通用塑料取得巨大成就,提供了可靠的原材料基础和各种可应用的性能,通过融熔可制造大量物品(如薄膜和模塑品),加工方法不仅价廉且对环境污染很小。 1973年能源危机以后,替代能源和资源,如生物质(biomass)问题引起人们注意并加强了研究。而随着原油价格下落,大众对它的兴趣又出现衰落。但从地缘政治和经济发展上看,过分依赖石油以及它的有限的可利用性,又使人们考虑替代能源和资源问题。按现在探明的石油储量,用现代开采技术,也不过可采40年。这种预测较为乐观。这是建立在中东地区原油储量持续增加的基础上的。现在温室气体CO2完全是由矿物原料生成的,这已经成为全球气候变化的难以预测和不可逆转的原因。传统塑料垃圾埋于地下,因为降解很慢,在很长的时间内会占据可贵的土地,因此,人们设想如果能在可再生资源基础上实现循环应用将是十分具有吸引力的,特别是应用天然产品。 现在人们研究和开发的可生物降解材料多是以天然产物为基础,有的是通过微生物合成的聚酯,有的是从可再生资源制取单体再进行聚合成材料,如聚乳酸(PLA),其实有些单体也可以用石油化工路线制备。所以,研究材料的生物降解性应当包括可再生资源基础材料和石油化学基础材料两类,并且要对它们的生态潜能(eclogical pontmfid)进行比较。1关于生物可降解性 生物可降解材料现在受到人们关注。生物可降解性与从可再生资源制备是两种不同的概念。天然生成的聚合物,如纤维素或是天然橡胶是可生物降解的,但是生物可降解性是与物质的化学结构有关,而不论此结构是由可再生资源或矿物资源制备的。 德国自1998年标准试验方法中就有生物可降解性条款,作为塑料可分解性的测定内容。在分析中,除了化学组成(如某种重金属存在)外,还要测试在实验室条件下完全降解可能性,测试在实际生活条件下的降解性及分解物性质,测定分解物对大鸟,蚯蚓等生态毒性。对于可生物降解性的定义是:在实验室条件下,60的有机碳必须在6个月内完全转化。而在实际条件下,塑料90应能降解成小于2mm的碎片。 除天然聚合物外,用微生物或化学方法制备的可生物降解聚酯也成为当前关注中心。降解发生一般分为两步:首先是经过酶或化学水解成低分子量的碎片,有时可以分解成原始单体,这些碎片可以被细胞再吸收,最终成为CO2和水。聚合物中的非晶区的侵蚀比结晶区要快得多。聚合物的结晶度和晶粒大小对降解速率有很大的影响。传统的聚酯和聚酸胺具有较高的结晶度,这种结构对其主要的机械力学性能起着决定性作用。因此,可以作模塑部件和纤维。但是,它却导致了难以降解,在有效使用期内及在环境影响下保持稳定。2关于天然聚合物 每年通过光合作用要生成11011t生物质,大部分是纤维素、淀粉、各种多醣和木质素。纸问世2000多年,现在全世界每年生产纸和纸板320106t,比石油化工的塑料年产量200106t还高。然而,它的亲水性,机械力学性能对水非常敏感,限制了它作为材料的应用,泡水纸袋就没有用了。而且,纤维素不像通用塑料如聚烯烃,它不能用热塑法加工。因此,纤维素纤维(粘胶丝)或纤维素板(赛璐珞)都是用溶液法将纤维素黄原酸盐分解来制备。如果将其衍生可以得到适合热塑加工的材料,例如醋酸纤维素或赛璐珞(用松香增塑的硝酸纤维素)但是,这些都需要用矿物资源进一步进行合成反应,而且这些衍生物的可降解性都比未经改性的纤维素低。 纸浆主要成分是纤维素,除了用作造纸,还可做化工原料。它是从木材分离出来纤维素和木质素后制造的。当前制造工艺要消耗大量的能源和水,并释放污染物(硫化物)到环境中,因此从原料和用完垃圾给环境总的影响来考滤,纸袋与聚乙烯袋相比,并无优势。用价廉的纸浆和对水稳定的聚乙烯制造复合材料,可以作饮料容器,已在欧洲市场上大量应用,商品牌号为Tetrapak,是在纸板制成的容器壁上涂上很薄的聚乙烯膜保护层。在用后回收中,纸浆制品可以溶解并可用作对纤维质量要求不高的制品,而聚乙烯则进行焚烧取得能源。 淀粉与纤维素不同,只要含有一定水分,就可用热塑法加工。由于它对水的敏感性,各种机械力学性能的应用都受到严重限制。通过与聚乙烯或聚酯类热塑性塑料共混,性能可得到很大的改进。与可生物降解聚酯共混,产物可完全分解。现在Noramom公司以MaterB牌号在市场销售,每年约2万t。 一些天然聚合物在活体组织中体现出许多活性功能,引起人们高度重视。从自然界可再生资源直接取得天然聚合物是材料制备的一个有价值的捷径。因此需要从生物质中进行分离,而且要解决其因为加工性不好而影响应用的限制。因此,近年来,人们关注的焦点转向其它可生物降解热塑性塑料,如从微生物或化学合成制取各种聚酯上。 3微生物结合成聚酯 聚-羟基丁酸酯(PHB)是由不同的细菌将碳水化合物在可控的营养条件下发酵生成的,类似于其它有机体中的淀粉和糊精的功能,它是一种能源贮存库,它以约05m粒子状存于细胞质之中。在适当条件下,90左右的聚合物可以积聚成细菌干体。要分离出PHB,就需要用机械剪力或通过酶的消化作用来破碎细胞壁,随后再将聚合物萃取出来,萃取可在离心机中洗涤,或用有机溶剂(如二氯甲烷)。 在60年代早期,PHB只能按kg级规模生产,由于它是从可再生资源制备的塑料又具有可生物降解性,显现出商业应用的潜势。1973年能源危机中,提高了对PHB的兴趣。用发酵工艺成功地从葡萄糖和丙酸制备PHBV(3-羟基丁酸酯与3-羟基戊酸酯共聚体),PHB熔点为180,而PHBV可降低到137(含20mol3-羟基戊酸酯单元),从而显著改善了热塑加工性,同时提高了机械力学稳定性(冲击强度)一个数量级。总体性能可与聚丙烯相比。油价稳定后,PHB类商业应用的兴趣下降了。然而80年代后期,ICI却将PHBV工业化了,牌号为Biopolo,在德国吹塑法制备的洗发液瓶上市;另一个未来的商业应用是作渔网,当它沉到海洋底部就可以降解。1996年Biopol技术出售给孟山都公司,该公司加强了在转基因植物中直接合成聚羟基烷基酸酯的研究,1998年停止生产。该公司在慕尼黑的Biomer公司自1994年就用自行培殖的细菌株生产PHB,现在年产数t,价格为1520欧元kg,主要用作焰火火箭,它可在环境中降解。 碳水化合物的直接合成也是一条有效的捷径。现在聚羟基烷基酸酯的合成的不利之处在于要用较贵的葡萄糖作基质,它转换成PHBV的收率不高(40),而且所得聚合物需要分离。设计对基质要求较低的细菌,或在基因改性植物中直接生产聚多羟基烷基酸酯都为未来的发展提供了可能。(朱曾惠 编译)完全生物降解材料 - 概述人类在创造现代文明的同时,也带来负面影响白色污染。一次性餐具、一次性塑料制品以及农用地膜等均难以再回收利用,其处理方法以焚烧和掩埋为主。焚烧会产生大量的有害气体,污染环境;掩埋则其中的聚合物短时间内不能被微生物分解,也污染环境。残弃的塑料膜存在于土壤中,阻碍农作物根系的发育和对水分、养分的吸收,使土壤透气性降低,导致农作物减产;动作食用残弃的塑料膜后,会造成肠梗阻而死亡;流失到海洋中或废弃在海洋中的合成纤维渔网和钓线已对海洋生物造成了相当的危害,因此提倡绿色消费与加强环境保护势在必行。面对日益枯竭的石油资源,符合潮流的生物降解材料作为高科技产品和环保产品正成为一个研发热点。1、生物降解材料生物降解材料是指在适当和可表明期限的自然环境条件下,能够被微生物(如细菌、真菌和藻类等)完全分解变成低分子化合物的材料。1.1、生物降解材料的分类生物降解材料按其生物降解过程大致可分为两类。一类为完全生物降解材料,如天然高分子纤维素、人工合成的聚己内酯等,其分解作用主要来自:由于微生物的迅速增长导致塑料结构的物理性崩溃;由于微生物的生化作用、酶催化或酸碱催化下的各种水解;其他各种因素造成的自由基连锁式降解。另一类为生物崩解性材料,如淀粉和聚乙烯的掺混物,其分解作用主要由于添加剂被破坏并削弱了聚合物链,使聚合物分子量降解到微生物能够消化的程度,最后分解为二氧化碳(CO2)和水。生物崩解性材料大多采用添加淀粉和光敏剂的方法,与聚乙烯和聚苯乙烯共混生产。研究表明【2】,淀粉基生物降解塑料袋最终将进入垃圾场,不接触阳光,即使其中有发生物双降解作用,所发生的降解作用也主要以生物降解为主。一定时间的试验表明:垃圾袋无明显的降解现象,垃圾袋没有自然破损,甚至对袋里的垃圾起到一定的“保鲜”作用。对于解决环境污染,尽管含淀粉基的塑料比一次性塑料制品有效,但由于仍采用不能生物降解的聚乙烯或聚酯材料为原料,故除了添加的淀粉能够降解外,剩余的大量聚乙烯或聚酯仍会残存而不能完全生物降解,只是分解为碎片,无法回收,进入土壤后情况更糟,对废弃物的处理造成混乱,因而完全生物降解材料成为降解材料的研究重点。1.2、完全生物降解材料的品种和性能安全生物降解材料包括天然高分子纤维素、人工合成的聚己内酯、聚乙烯醇等。自然界本身有分解吸收和代谢天然高分子纤维素的自净化能力。该材料在用过废弃后能被自然界微生物的酶降解,降解产物能被微生物作为碳源吸收代谢。聚己内酯是目前价格较低的全微生物分解性合成高分子,所用的聚己内酯是环状单体己内酯,己内酯是利用有机金属化合物进行开环聚合而制得的脂肪族聚酯。主要性能有:熔点和玻璃化温度较低,分别只有60-60,结晶温度为22;其纤维强度和聚酰胺6纤维几乎相当,拉伸强度可以达到70.56cN/tex以上,结节强度也在44.1cN/tex以上,而且在湿态情况下的强度损失很小;生物降解性和人造纤维相似,其产品大约在一周内即降解成不可能测试的薄片。聚乙烯醇为可生物降解树脂,故淀粉基聚乙烯醇塑料可完全生物降解。乙烯和变性淀粉基共聚的产品具有良好的成型加工性、二次加工性、力学性能和优良的生物降解性能。日本合成化学工业公司开发出具有热塑性、水溶性、生物降解性的聚乙烯醇树脂,可熔融成型,其熔点为199,可在214-230下采用挤塑、吹塑、注塑等工艺成型。产品的透明性、水溶性、耐药品性均十分优越,可用于涂布复合成型容器和包装材料。聚乳酸最早由日本岛津公司和钟纺公司联合开发,以乳酸为主要原料聚合所得到的高分子聚合物,而乳酸是一种在动植物和微生物体内常见的天然化合物,极易自然分解,其纤维具有优良的性能,介于合成纤维和天然纤维之间。亲水性优于聚酯纤维,比重低于聚酯纤维,有极好的手感、悬垂性和外观,好的回弹性,优良的卷曲和卷曲保持性,有可控的收缩性,强度达62cN/tex,不受紫外光影响,可用多种染料染色,杰出的可加工性,热粘合温度可控制,晶体熔融温度高达120-230,低可燃性。乳酸单体的主要特征是其以两种旋光性形式存在,聚乳酸技术利用该独特的聚合物性能,通过控制D和L异构体在聚合物链上的比例及其分布来控制产品的结晶熔点。聚L-乳酸(PLLC)是以淀粉、糖蜜等生物资源为原料发酵制得L-乳酸,再用化学方法合成的高分子材料。PLLC是热塑性材料,其可塑性与聚苯乙烯和聚酯相似,其结晶性和刚性都比较高,抗张强度优良。完全生物降解材料 - 性能及其评价对生物降解材料的降解性能的测试目前还没有制订统一的标准,可采用包括被美国材料试验标准(ASTM)采纳或准备采纳的方法作为标准的方法,通过生物化学和微生物的实验手段来评价的主要方法有下列几种。2.1、土埋法土埋法有室外土埋法和室内土埋法两种,其微生物源主要是土壤中的微生物群,经一定时间后,取出试样测定其失重、机械性能变化,或用电子显微镜确定其被土壤中微生物侵袭的状况。优点是能反映出自然环境条件下的生物分解性能;缺点是试验周期长,试验结果因土质不同而不同,重复性差。2.2、陪替氏培养器定量法在容器中加入试验样品和营养琼脂,接种微生物进行培养,经一定时间后,分析试样的失重情况以及某些物理变化或化学变化。优点是可快速降解,在短时间内获得试验结果,重复性好,定量性好;缺点是不能反映自然界中的实际情况。2.3、酶分析法在容器中加入缓冲液和试验样品,让酶作用一定的时间后,分析试样的失重情况,目测霉菌的生长情况,显微镜分析试样物理性能或化学性能的变化。优点是试验周期短,重复性好,定量性好;缺点是不能反映自然界中的实际情况。2.4、放射性C14示踪法用C14标记聚合物产品,在微生物的作用下产生CO2,用碱性溶液吸收,用滴定法测出CO2总量,再用放射性衰减率法测定C14的CO2量,用C14的CO2占产生的CO2的百分数表示微生物侵蚀的程度。优点是实验结果可靠、明确。生物降解性能的测试可以检测样品生物降解性能的优劣。完全生物降解材料 - 应用生物降解材料广泛应用于各行各业,可以部分代替通用塑料。使用量最大的是环保材料、包装材料以及医用材料。3.1、农业用途理想的农用材料是能与其他生物降解材料协同作用转化为提高土质的材料,生物降解材料在农业上主要用作农用地膜和农作物生长容器。3.1.1、农用地膜传统的薄膜在帮助农作物生长,增加农作物产量方面发挥了重大的作用,但致使的缺点是使用后的处理十分困难。经过整个农作物生长期的风吹日晒,薄膜的强度下降并都裂为小碎片残留在土壤中,小碎片会引起土壤板结,阻碍作物根部发育和对水分的吸收,还会随风飘散,造成环境污染。生物降解农用地膜除具有传统塑料薄膜的优点外,最重要的是其使用后可以自动降解,不必收集,同时农肥和水的需求量相应减少,可以进行下一季的耕作,因而既可以减少白色污染,又可以降低生产成本。3.1.2、农作物生长容器农作物生长容器用于播种和移栽树苗、花卉、蔬菜以及盆景。如果容器不是生物降解性的,在移栽之前必须除去容器才能使根系快速生长,而且裸根容易受损,很难用机械栽插,而生物降解塑料容器在栽种时保护了根系,成活率高,用这种方法种植和移栽可以使许多植物降低成本,移栽季节延长,成活率提高。研究发现,以聚己内酯为主要成分的农作物生长器,在土壤中会发生明显的生物降解,6个月后失重48%,一年后失重约95%。生物降解材料在农业方面的其他应用还有草皮种植片、堆肥用袋以及农用药物的摈释材料等。3.2、包装用途生物降解塑料制成的食品袋、包装袋、垃圾袋因其生物降解性而大受青睐。生物降解包装材料一般是将可降解的高分子聚合物加入到层压膜中或直接与层压材料共混成膜。食品包装材料和容器一般要求能保证食品不腐烂、隔离氧气且材料无毒。其中最具代表性的是聚羟基丁酸酯(PHB)与聚羟基戊酸酯(PHV)及其共聚物(商品名Biopol),其物性与聚乙烯和聚丙烯相近,且热封性良好,Biopol用过后可生物降解或被焚烧,两者的耗氧量仅相当于其光合作用放入大气的氧,处理后产生的CO2即为光合作用摄入的全部CO2量,因此可认为完全进入生物循环。生物降解塑料还可用作一次性缓冲材料。据报道,日本幸和株式会社开发的聚乙烯醇淀粉型生物降解塑料是性能较优良的缓冲材料,表观密度比传统的聚苯乙烯缓冲材料稍高。3.3、医用生物降解材料医用材料不仅需要有医效,而且还要安全、无毒、无刺激性,与人体有良好的生物相容性。医用生物降解材料是指完成医疗功能后,可被生物体内的溶解酶分解而吸收,生物降解塑料已被广泛用于手术缝合线、人造皮肤、矫形外科、体内药物缓释剂和吸收性缝合线等领域。3.3.1、外科手术缝合线理想的缝合线应在体内有良好的适应性、无毒、无刺激性,且在体内保持一定时间的强度后能被组织吸收,其缝合、打结性能以及柔性等方面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论