全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.2二元一次方程组的解法(1)【学习目标】会运用代入消元法解二元一次方程组【学习重、难点】1、会用代入法解二元一次方程组。2、灵活运用代入法的技巧【自主学习】 一、基本概念1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的思想,叫做_。2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做_,简称_。3、代入消元法的步骤:代入消元法的第一步是:将其中一个方程中的某个未知数用_的式子表示出来;第二步是:用这个式子代入_,从而消去一个未知数,化二元一次方程组为一元一次方程【合作探究】1、将方程5x-6y=12变形:若用含y的式子表示x,则x=_,当y=-2时,x=_;若用含x的式子表示y,则y=_,当x=0时,y=_ 。2、用代人法解方程组,把_代人_,可以消去未知数_,方程变为: 3、若方程y=1-x的解也是方程3x+2y=5的解,则x=_,y=_。4、若的解,则a=_,b=_。5、已知方程组的解也是方程组的解,则a=_,b=_ ,3a+2b=_。6、已知x=1和x=2都满足关于x的方程x2+px+q=0,则p=_,q=_ 。7、用代入法解下列方程组: 【展示提升】 1. 若mn5(2m3n5)20,求(mn)2的值 2.已知2x2m-3n-7-3ym+3n+6=8是关于x,y的二元一次方程,求n2m【达标测评】 1、方程组的解是( )a. b. c. d.2、若2ay+5b3x与-4a2xb2-4y是同类项,则a=_,b=_。3、用代入法解下列方程组 (1)4、如果(5a-7b+3)2+=0,求a与b的值。5、若方程组与有公共的解,求a,b.6、当k=_时,方程组的解中x与y的值相等。7、已知二元一次方程3x+4y=6,当x、y互为相反数时,x=_,y=_;当x、y相等时,x=_,y= _ 。8、对于关于x、y的方程y=kx+b,k比b大1,且当x=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考英语真题及详细解析2023
- 工业自动化系统质量监控方法
- 2026年建设工程造价(现场签证计价)自测试题及答案
- 2026年建设工程造价(土建工程)工业厂房造价分析自测试题
- 临时劳务合同范本及签订注意事项
- 酒店前厅管理规范及客户服务标准
- 医务人员职业操守与服务质量提升攻略
- 加油站经理岗位职责与能力提升方案
- 语言培训机构教学质量提升方案
- 职场新人快速晋升技巧与方案
- (完整版)承插式钢筋混凝土管施工方案
- 半导体分立器件和集成电路键合工作业指导书
- 装修施工消防安全控制方案
- 疾控中心科研管理办法
- 2024下半年特斯拉可持续发展报告:员工价值与企业价值并重
- 2025至2030中国核医学行业发展分析及发展趋势分析与未来投资战略咨询研究报告
- 《法律职业伦理(第3版)》全套教学课件
- 乡镇武装工作课件
- 小区规种菜整治方案(3篇)
- 2025年学宪法讲宪法知识竞赛题库答案(小学组)
- 旅游接待服务礼仪规范培训
评论
0/150
提交评论