




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ST7536 introduce By Joel HULOUX I- INTRODUCTION TO THE ST7536 The ST7536 is a half duplex synchronous FSK-modem,and has been designed to operate on powerline networks.For a complete communication system, a micro-controller and a powerline-interface (PLI) are needed (see Figure 1).Such a system is able to transmit and receive on 4 different channels with 2 differentdata rates (600 and 1200 baud).The baudrate (BRS) and channel (CHS) selection is made,according to the Table. The ST7536 is a half duplex modem,as it has two operation modes;receive or transmit data.The mode selection is made with a Rx/Tx control input.Data input and output are related to the clock signal;its a synchronous modem. This clock signal is generated by the ST7536.Only a few external components have to be added for full operation of the ST7536:a crystal, four resistors and five capacitors. II- ST7536 DESCRIPTION The ST7536 is a single chip modem;all the electrical circuits needed for a complete modem are inside the chip. The modem is available in 28 pins PLCC (see Figure 2).In transmit mode the Transmit Data (TxD) is sampled on the positive edge of the clock (CLR/T).Then the data enters the FSK modulator. The frequency on which this modulator operates is set by the time base and control logic. In normal operation the multiplexer(MUX) selects the FSK modulator signal to be send to the transmit filter.This filter is a switched capacitor band-pass filter. Thetime base and controllogic uses the Automatic Frequency Control (AFC) to set this filter at the transmit frequency, corresponding to the selected channel.After filtering, the transmitsignal is sent to an Automatic Level Control (ALC).This control is used to overcome problems with line impedance variations. The powerlines on which the modem has to operate, have variations in their line characteristics,which are very frequent and totally unpredictable.The automatic level control uses a feed back signal (ALCI) from the powerline interface to adjust the transmit output (ATO).In receive mode the signal enters the chip on the Receive AnalogInput(RAI). The received signal is filtered in the receive band-pass filter. Its just like the transmit filter,a switched capacitor filter.The automatic frequency control is used to set it on the right frequency. After being amplified the signal is down converted and filtered in the intermediate frequency band-pass filter.The resulting signal is sent to the FSK demodulator. The coupling of the intermediate frequency filter output (IFO) to the FSK DEModulator Input(DEMI) is made by an externalcapacitor which cancelsan even tualoff set voltage. A clock recovery circuit extracts the receive clock (CLR/T) from the demodulated output (RxDEM) of the FSK demodulator. Synchronous received data (RxD) is delivered on the positive edge of the clock.A time base section delivers all the internal clock signals from a crystal oscillator running at 11.0592MHz.The crystal is connected between the XTAL1 and XTAL2 pins.It is also possible to provide directly a clock signal on XTAL1 instead of using a crystal.To debug the chip and test external circuits the ST7536 provides some test options. The transmit band-pass filter can be observed using a direct input on the filter. This input (TxFI) is selected by the multiplexer if TEST4 = 1. The Receive bandpass Filter Output (RxFO) is provided at pin 25.Finally the clock recovery can be observed when TEST1 = 1. In this case the TEST3 input gives a direct input to the clock recovery block. III- ST7536 PIN DESCRIPTION The pin description is not given in numerical order,but the pins are described in relation with their function and consequentlysometimes with other pins. - power supply input - channel selection - crystal oscillator input - AFCF stabilisation - automatic level control input - data input and output - test inputs - IFO/DEMI output/input - transmit output and receive input - Rx/Tx control input - reset input III.1- Power Supply Input - Pin 8 (DGND): Digital ground (0V) - Pin 9 (DVDD): Digital positive supply voltage (+5V) - Pin 18 (DVSS): Digital negative supply voltage (-5V) - Pin 21 (AVSS): Analog negative supply voltage (-5V) - Pin 22 (AGND): Analog ground (0V) - Pin 23 (AVDD): Analog positive supply voltage (+5V) Internally the ST7536 has separated power supplies:The digital andanalog circuit sare separated.Externally the power supplies should be connected together.For decoupling,both the positive and negative supplies are decoupled with 2 capacitors.C6 and C7 decouple the positive,C8 and C9 the negative supplies.For proper operation the digital positive supply voltage should be decoupled with a capacitor(C10)mounted close to Pin9.C6,C8 and C10 are100nF/16Vceramic capacitors,C7 and C9 10uF/16V tant alcapacitors (seeFigure 3). III.2 - Channel Selection - Pin 15 (CHS): Channel selection input - Pin 16 (BRS): Baudrate selection input Both inputs are digital inputs (0/+5V). The ST7536 operates with two bit rates: 600 and 1200 baud. These bit rates are selected with pin 16 (BRS). For both bit rates the ST7536 offers two channels,which are selected with pin 15 (CHS).Alogical”0” is represented by 0V, a”1”by +5V. R1 and R2 are pull-down resistors,creating a logical”0”.Closing a switch gives a”1”.The selection is made according to Table 1. III.3 - Crystal Oscillator Input - Pin 13 (XTAL2): Crystal oscillator output - Pin 14 (XTAL1): Crystal oscillator input The internal crystal oscillator of the ST7536 needs an external crystal. This one should be a 11.0592MHz crystal. Two capacitors (C1 and C2) have to be added for proper operation. They are typically 22pF/10V ceramic capacitors. It is also possible to connect directly a clock signal to the oscillator input, in this case the crystal and the capacitors should be removed.On the application board this option is notused. The ST7536 clock signal is the time reference of the system. III.4 - AFCF Stabilisation - Pin 17 (AFCF) : Automatic frequency control output In the ST7536 an automaticcontrol section adjusts the central frequency of the receive and transmit band-passfilters. The stabilityof this sectionhas to be ensured with an external RC network. III.5 - Automatic Level Control Input - Pin 27 (ALCI): Automatic level control input. The output stage of the transmit path consists of an automatic level control (ALC).It offers the possibility to keep the output voltage of the power amplifier independent of variations of the powerline network. The impedance of these networks can be anywhere in the range of 5-100.If the impedance of the powerline changes,the outputof theamplifier will change.With the ALC input it is possible to correct these output variations. To control the output of the powerline interface a feed-back signal is needed. This signal is sent through an amplifier. The automatic level control can decrease the maximum transmit output in 32 steps of 0.84dB. The gain range is 0dB-26dB. A peak detection is done on the signal presented on the ALC Input and the ALCcompares it to two reference voltages, VT1 (1.87V) and VT2 (2.12V). If max. VALCI VT1 the next gain is increased by 84dB. If VT1 max. VALCI VT2 there is no gain change. If VT2 max. VALCI the next gain is decreased by 0.84dB. The gain of the feed-back amplifier is such that the feed-back signal peak voltage falls between VT1 and VT2. III.6 - Data Input and Output - Pin 5 (RxD): Synchronous receive data output - Pin 6 (CLR/T): Receive and transmit clock - Pin 7 (RxDEM): Demodulated data output - Pin 12 (TxD): Transmit data input The ST7536 is a synchronous modem; data input and output are related to the clock (CLR/T). In transmit mode the ST7536 generates this clock signal. The transmit data are sampled on the positive edge of CLR/T. Therefore the TxD should be valid at that moment.In receive mode the demodulated (receive) data is available at pin 7(RxDEM). A clock recovery circuit extracts the clock signal from the demodulated data and delivers synchronous data (RxD) on the positive edge of CLR/T. On the application board the RxDEM data output is not used. All the data signals from and to the ST7536 (RxD, TxD) are related to the clock (CLR/T) (see Figure 8). III.7 - Test Inputs - Pin 3 (TEST4): Test input,with a”1”on this pin the multiplexer selects thetransmit band-pass filter input(TXFI). - Pin 4 (TEST3): Test input which gives a direct acces to the clock recovery circuit.This input is selected when TEST1=”1”. - Pin 10 (TEST1): Test input,a”1”on this pin cancels the automatic switching from transmit to receive mode, and validates the TEST3 input to the clock recovery circuit. - Pin 11(TEST2): Test input,a”1”on this pin reduces the automatic switching time (from transmit to receive mode) to 1.48ms.On the applicationboard TEST 2/3/4 are not used,and Pins 3, 4, and 11 are thereforeset at 0V.With a switch TEST1 can be set at”0”or”1”.See also the Rx/Tx control input. III.8- IFO/DEMIOutput/Input - Pin 19 (IFO): Intermediate frequency filter output - Pin 20 (DEMI): FSK demodulator input The connection between the intermediate frequency filter output and the FSK demodulator input should be made externally with a capacitor (C5, 1uF/10V). III.9 - Transmit Output and Receive Input - Pin 24 (RAI): Receive analog input - pin 28 (ATO): Analog transmit output Pin 24 is the receive input of the ST7536. The receive output of the powerline interface should be connected to this pin.The maximum input voltageis 2VRMS. The receive sensitivity of the ST7536 is 2mVRMS on channel 1 and 2 (600 baud),and 3mVRMS on channel 3 and 4 (1200 baud).Pin 28 is the transmit output of the ST7536. The transmit input of the powerline interface should be connected to this pin. The ATO output is regulated by the ALCI circuit. The maximum output voltage is 3.5VPP. The second harmonic distortion is about -53dB. III.10 - Rx/Tx Control Input - Pin 1 (Rx/Tx): Receive or transmit mode selection input . The ST7536 is a half duplex modem and has therefore two operation modes: receive and transmit. This mode selection is done with the Rx/Tx input. The transmit mode is selected when Rx/Tx is”0”.If Rx/Tx is held a”0”longer than 3 seconds, the ST7536 switches back to receive mode. To set the ST7536 again in transmit mode, Rx/Tx should be held at”1”for a minimum of 3s before being set to”0”.The carrier activation time is 1msec. To be able to observe the transmit output of the ST7536 on the power line interfacefor a longer time than3 seconds it is possible to use the test 1 Input. If this input is set at”1”the automatic switching is disactivated. Then it is possible to transmit a signal but not to receive. III.11 - Reset Input - Pin 2 (RESET): Logic reset and power-down input When this input is set at” 0”the ST7536 is in power-down mode.All the internal logic is then reset.For normal operation this input should be set at”1”.On the application board this input is controlled by the micro-controller. Technical Data Sheet SSC P300 PL Network Interface Controller Features -Enables Low-cost CEBus compatible products -EIA-600 (CEBus) Data Link Layer services -EIA-600 Physical Layer transceiver -Spread Spectrum Carrier Power Line technology -SPI Host Processor interface -Data Link, Controller, and Monitor modes -Single +5 Volt power supply requirement -20 pin SOIC package Introduction The Intellon SSC P300 PL Network Interface Controller is a highly integrated power line transceiver and channel access interface for implementing CEBus compatible products.The SSC P300 provides the Data Link Layer (DLL) control logic for EIA-600 channel access and communication services, a Spread Spectrum Carrier(SSC) power line transceiver, signal conditioning circuitry, and a serial peripheral interface (SPI) compatible host interface. A minimum of external circuitry is required to connect the SSC P300 to the power line. Superior performance is achieved using the SSC P300 in conjunction with the SSC P111 Media Interface IC. The SSC P300 is used with a host microcontroller to construct CEBus compatible products, and serves as the basic communications element in a variety of low-cost power line networking applications. The inherent reliability of SSC signaling technology and incorporation of basic Data Link functionality combine to provide substantial improvement in network and communication performance over other power line communication methods. The SSC P300 also makes an excellent low cost network interface for twisted pair and DC power systems. A typical CEBus power line node using the SSC P300 is illustrated below. SSC P300 Node Block Diagram VDD DC Supply Voltage -0.3to 7.0V VIN Input Voltage at any Pin VSS-0.3 to VDD+0.3V TSTG Storage Temperature -65 to +150C TL Lead Temperature(Soldering,10 seconds)300C Note: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages. Recommended Operating Conditions VDD DC Supply Voltage 4.5、 5.0、 5.5V FOSC Oscillator Frequency 12 +/- 0.01% MHz TA Operating Temperature -40、 +25、 +85C Humidity non-condensing Electrical Characteristics Conditions:VDD = 4.5 to 5.5 V T=-40 to +85C Symbol Parameter Min Typical Max Units VOH Minimum High-level Output Voltage 2.4V VOL Maximum Low-level Output Voltage (1) 0.4V VIH Minimum High-level Input Voltage 2.0V VIL Maximum Low-level Input Voltage 0.8V Hys Minimum Input hysteresis 350 mV IIL Maximum Input Leakage Current +/-10A vSO SSC Signal Output Voltage (2) 4 VP-P IDD Total Power Supply Current 25 mA Latchup (3) 150 mA Notes: 1. IOL = 2 mA 2. ZL = 2K | 10 pF 3. JEDEC JC -40.2 SSC PL P300 Network Interface Controller SSC P300 Pin Assignments 1 4MHZ 4 MHz clock out 4 MHz clock output available for host microcontroller. 2 CS*Chip select Digital input, active low. Enables serial peripheral interface. 3 VSSD Digital ground Digital ground reference. 4 XIN Crystal input Connected to external crystal to excite the ICs internal oscillator and digital clock. 5 XOUT Crystal output Connected to external crystal to excite the ICs internal oscillator and digital clock. 6 VDDD Digital supply 5.0 VDC +/- 10% digital supply voltage with respect to VSSD. 7 INT* Interrupt Digital output, active low. Attention request to host microcontroller. 8 SCLK SPI data clock Serial peripheral interface clock input from host microcontroller. 9 SDO SPI data out Data output to host microcontroller serial peripheral interface. SDO istristate when CS* is false. 10 SDI SPI data in Data input from host microcontroller serial peripheral interface. 11 TS Tristate Active low digital output signal driven from the same internal signal that enables the output amplifier. 12 RST* Reset Active low digital input. 13 VSSA Analog ground Analog ground reference. 14 SO Signal output Analog signal output. Tristate enabled with internal TS signal. 15 C2 Capacitor 2 Connection for 680pF capacitor to ground. 16 C1 Capacitor 1 Connection for 680pF capacitor to ground. 17 SI Signal input Analog signal input. 18 VDDA Analog supply 5.0 VDC +/- 10% analog supply voltage with respect to VSSA. 19 TP0 Test point 0 Reserved pin for testing. 20 VSSD Digital ground Digital ground reference.SSC PL P300 Network Interface Controller SSC P300 Node Overview The SSC P300 is designed to meet the needs of products requiring EIA-600 compatibility. As the SSC P300 uses fewer interface signals than the SSC P400 does, a lower cost host (microcontroller) may be used. Coupling the lower cost host with the low cost of the SSC P300, an EIA-600 compliance node can be added to cost sensitive products. The SSC P300 can transmit and receive all four Data Link services defined in the EIA-600 standard, which allows the designer to select the best Data Link service for the job.As seen in the block diagram on page 1, a typical node consists of three sections: The first section is the host microprocessor or microcontroller, which is responsible for communicating with the SSC P300 and performing application specific tasks. The second section is the SSC P300 itself. It is responsible for resource intensive. Data Link functions and Physical layer services of the protocol. Specific DLL services include transmission and reception of packets, byte-to-symbol conversion for transmitted packets, symbol-to-byte conversion for received packets, transmit channel access (based on packet priority and EIA-600 access rules), and CRC generation and checking. The last section is the power line analog functions. These functions include: coupling the signal frequencies onto the medium, amplification of the transmitted signal to drive the impedance of the medium, and input filtering of the incoming signal.The host communicates with the SSC P300 by issuing commands. These commands provide for the initialization and verification of the nodes operating mode and addresses, for the transmission and reception of packets, and for the return of status information. In general, the host must provide the following functions in order to utilize the SSC P300: 1. Initialization routine. 2. Routine to write commands out to the chip. 3. Routine to read data from the chip. 4. Interrupt service routine. The SSC P300 can be placed into one of three operating modes:Data Link Layer (DLL) mode, Controller(CON) mode,and Monitor(MON) mode. In the DLL mode, the P300 will manage all address matching, and timer resources.In the CON mode, the P300 converts the incoming signal into bytes.It becomes the responsibility of the host to manage address matching and timer resources. The MON mode monitors the medium. Any packet detected on the medium is passed up to the host regardless of the packets address or type. ST7536介绍 Joel HULOUX著 1、 ST7536 的介绍 ST7536是一个半双工同步 FSK调制解调器 ,并且对于设计和操作电力线网络是很有帮助的。对于一个完整的通信系统 ,微型控制器和电力线接口 (PLI)是必要的。这样系统能在 4种不同频道上以 2种不同的数据率 (600和 1200波特 )传送和接收信号。波特率 (BRS)和频道 (CHS)选择在此时被执行。 ST7536是一个半双工调制解调器 ,因为它有二个操作方式,接收或传送数据。模式选择用Rx/或用 Tx作为控制输入。数据输入和输出是与时钟信号有关的。它是一个同步调制解调器。这个时钟信号由 ST7536所引起。几个外在分组都必须增加对 ST7536的进行设置 :一个晶振 , 四个 电阻器和五台电容器。 2、 ST7536 描述 ST7536是一个具有唯一一个芯片的调制解调器;所有电子电路需要有一个完整的调制解调器处在芯片里面。调制解调器是在 28个串口可利用的 PLCC。传送数据的方式 (TxD)被抽样在时钟的正面边缘 (CLR/T)。然后数据进入 FSK调制器。这个调制器所需的频率被设置在时间基准和控制逻辑上。在正常运行多重通道 (MUX)选择的 FSK调制器信号是送到传送过滤器的。过滤器是一台被交换的电容器带通滤波器。时间基准和控制逻辑的用途是所谓的自动频率控制(AFC)的设置。这过滤器以传送频 率 , 对应于选择的频道,在过滤以后 ,传输信号被送到自动电平控制 (ALC)电路。这种控制的使用是为了克服有线的问题阻抗变异。 调制解调器必须运用在电力线耦合下来的信号 ,变异的出现是在于他们的线性特征发生改变 ,有些是非常频繁而且是完全变化莫测的。自动电平控制使用一个反馈信号 (ALCI) 从电力线接口调整传送信号 (ATO)。在接收信号进入芯片时分析其输入的方式 (RAI)。接收的信号通过接收带通滤波器进行过滤。它就像传送过滤器 , 等效于电容过滤器。自动频率控制使用设置它在正确的频率。在被放大以后信号是在转换和过滤下 通过中频带通滤波器。收到的信号寄发到 FSK解调器。中频过滤器输出信号的联结 (IFO)对 FSK 解调器输入 (DEMI)由均匀集合电压做改变。 时钟补救电路时钟 (CLR/T)是从被解调的输出信号提供的。同步被接收的数据 (RxD)被设置在正面时钟的边缘。时间基本的部分提供所有内部时钟信号从一台晶体控制振荡器提供并运行在 11.0592MHz。晶振是运行于 XTAL1和 XTAL2 之间。它还可能直接地从 XTAL1提取时钟信号而不是使用晶振。调试芯片和测试外部 ST7536提供一些测试选择。传送带通滤波器直接通过过滤器被观 察。这输入 (TxFI) 由多重通道选择在 TEST4=1。接收带通滤波器输出信号 (RxFO)被设置在串口 25。最后时钟补救可能被设置在 TEST1=1。 TEST3输入在这种情况下直接根据输入时钟设置。 3、 ST7536 PIN 描述 串口的描述不需要数字次序 ,但串口在与其他串口之间的联系被描述。 - 电源输入 - 频道选择 - 晶体控制振荡器输入 - AFCF平稳 - 自动电平控制输入 - 数据输入和输出 - 测试输入 - IFO/DEMI输出输入 - 传送输出和接收输入 - Rx/Tx控制输入 - 重新设置输 入 3.1 电源输入 - Pin 8 (DGND): 数字式接地 (0V) - Pin 9 (DVDD): 数字式正极供应 电压 (+5V) - Pin 18 (DVSS): 数字式负极供应 电压 (-5V) - Pin 21 (AVSS): 模式负极供应 电压 (-5V) - Pin 22 (AGND): 模式接地 (0V) - Pin 23 (AVDD): 模式正极供应电压 (+5V) ST7536内部分离了电源 :数字式分析电路被分离。外部电源应该一起被连接。正极和负极供应与 2 台电容器分离。 C6 和 C7 由正极供应 ,C8 和 C9 负性供应。适当的操作数字式正极电源电压应该被分离。 C6,C8和 C10是 100nF/16V 的电容器 ,C7 和 C9 是 10mF/16的电容器。 3.2 频道的选择 PIN15( CHS):频道选择输入 PIN16( BRS):波特率选择输入 以上的两种输入都是数字输入( 0/+5V)。这个 ST7536设置在两种比特率上:( 600和1200BAUD)。这些比特率是由 PIN16( BRS)来选择的。对于两种比特率 ST7536通过 PIN15提供两种频道。非逻辑 0通过 0V来描述,而非逻辑 1是通过 +5V来描述的。 R1和 R2是被电阻器来隔离的,创造一个逻辑 0,而关闭给予的非逻辑 1。 3.3 晶体振荡器的输入 Pin 13(XTAL2):晶体振荡器输出 Pin 14( XTAL1) :晶体振荡器输入 国内的 ST7536晶体振荡器需要一个外部的晶振。它需要一个 11.0592MHZ晶体。电容器( C1和 C2)需要另外合适的设置。它们是具有代表性的瓷介电容器。如果晶体和电容器被分离它可能直接连接一个时钟信号到振荡器的输入。基于这种需求这种选择是不被使用的。这种ST7536时钟信号是对系统时间的提及。 3.4 AFCF的描述 PIN 17( AFCF):自动频率控制的输出。在 ST7536自动控制部件会调整接收和传输的边带信号的中心频率。这种部件的稳定性必须由一个外部的 RC网络来保证 。 3.5 自动电平控制输入 - Pin 27(ALCI): 自动电平控制输入。传送通路的输出阶段包括自动电平控制 (ALC)。它提供保留功率放大器的输出电压的独立电力线网络变异的可能性。这些网络阻抗可能是任何在范围的 5-100W。如果电力线的阻抗改变 ,输出电压则变动。对于 ALC的输入根据输出的变化范围而改变。控制电力线的输出连接的反馈信号是需要的。这个信号被送往自动增 益控制放大器。 自动电平控制能减少最大传送输出信号值在 32步每 0.84dB。增益范围是 0dB 到 -26dB。高峰检测是对于在 ALC上的现值信号输入和 ALC来比较两种电压范围。 VT1(1.87V)与 VT2(2.12V)。 如果最大。 VALCIVT1下增益被增加 0.84dB。 如果 VT1最大。 VALCIVT2增益是没有改变。 如果 VT2最大。 VALCI下增益被减少 0.84dB。 反馈放大器的增益是这样,反馈信号峰顶电压下跌到 VT1与 VT2之间 3.6 数据输入和输出 - Pin 5 (RxD): 同步接 收数据输出信号 - Pin 6 (CLR/T): 接收和传送时钟 - Pin 7 (RxDEM): 被解调的数据输出 - Pin 12 (TxD): 传送数据输入 ST7536是一个同步调制解调器;数据输入和输出与时钟有关 (CLR/T)。在传送方式下ST7536产生这个时钟信号。传送数据被抽样在 CLR/正面边缘 T。所以 TxD应该在那片刻是有根据的。在接收被解调的方式 (接受 )数据是可利用的在串口 7 (RxDEM)。 时钟补救电路从被解调的数据提取时钟信号和提供同步数据 (RxD)基于 CLR/ 正面边缘 T。在应用 模式 RxDEM数据输出没被使用。所有数据信号对于 ST7536(RxD,TxD)是与时钟有关的( CLR/T) 。 3.7 测试输入 - Pin 3 (TEST4): 测试输入 ,与在这个串口多重通道选择的带通滤波器输入 (TXFI)。 - Pin 4 (TEST3): 测试给直接时钟补偿电路的输入。这输入被选择 TEST1。 - Pin 10 (TEST1): 测试输入 ,在这个串口取消自动开关从传送接收方式 , 并且确认 TEST被输入到时钟补偿电路。 - Pin 11 (TEST2): 测试输入 ,在这个串口使自动开关时 间降低 (从传送对接收方式 )到1.48ms。在应用模式测试 2/3/4不被使用 ,并且串口 3,4,11是设置在 0。以开关 TEST1可能被设置在 0或 1。 3.8 IFO/DEMI输出 / 输入 - Pin 19 (IFO):中频过滤器输出 - Pin 20 (DEMI):FSK解调器输入 连接在中频过滤器输出和 FSK解调器输入之间,如果用电容器 (C5接地 , 1mF/10V) 。 3.9 传送输出和接收输入 - Pin 24 (RAI): 模拟接收输入 - Pin28 (ATO): 模拟传送输出 Pin 24是 ST7536的接受输入。电力线接口的接收输出应该是连接到这个串口。最大输入电压 2V。 ST7536的接收敏感性是 2mV在频道 1和 2 (600 波特 ), 并且 3mV在频道 3和 4(1200 波特 )。 Pin 28是 ST7536的传送输出。电力线接口的传送输入应该被连接到这个串口。 ATO输出由 ALCI电路调控。最大输出电压是 3.5VPP。第二个泛音畸变是 -53dB 。 3.10 Rx/Tx控制输入 - Pin 1 (Rx/Tx):接收或传送模式选择输入。 ST7536是一个半双工调制解调器和有二个操作方式 :接收和传送。这个模式 选择完成与 Rx/Tx输入。传送方式被选择当 Rx/Tx是 0。如果Rx/Tx选择 0比 3 秒更长 ,ST7536开关回到接收方式。设置 ST7536在重新传送方式 , Rx/Tx 应该选择在 1为 3ms为最小值在被设置在 0之前。载体活化作用时间是 1ms。能观察到 ST7536的传送输出比输电线更久的时间。支持它的接口是可能使用测试 1被输入。如果这输入被设置在 1,自动开关是不可用的。然后它是可能传送信号但不接收。 3.11 重新设置输入 - Pin 2(重新设置 ):逻辑重新设置和降低输入电压。这输入被设置在 ST7536是在“ 0”降压方式。所有内部逻辑然后被重新设置。为正常运行这输入应该被设置在“ 1”。应用模式的输入由微型控制器控制。 SSC P300 PL网络接口控制器特点 . 使用便宜的 CEBus2O兼容产品 . EIA-600(CEBus)数据链路层服务 . EIA-600物理层收发器 . 扩展频谱 Carrier5a输电线技术 . SPI主处理器接
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 急性病症护理试题及答案汇编
- 2024年审计师考试体会与总结分享试题及答案
- 2025年护士考试基础护理技能试题及答案
- 2024年会计职业伦理的挑战试题及答案
- 2025年建造师考试的真实案例分析与试题及答案
- 2025资产与股权的赠与合同
- 2025汽车美容服务合同范本
- 2025年赠与合同:无偿赠与住宅协议
- 酒店发展战略制定试题及答案
- 2025商业店铺租赁合同样本
- 预录用协议劳动合同
- GA/T 751-2024公安视频图像屏幕显示信息叠加规范
- 2025至2030中国长链氯化石蜡行业供需现状与前景策略研究报告
- 租地盖大棚合同协议
- 自体输血知识培训课件
- 人教A版高一下册必修第二册高中数学8.6.2直线与平面垂直【课件】
- 恋爱协议书违约合同
- 薪酬管理制度框架搭建
- 小学生涯课件
- 西藏拉萨中学2024-2025学年高三第二学期英语试题4月月考试卷含解析
- 软件开发行业智能化软件开发方案
评论
0/150
提交评论