




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 (12)错误 !未指定书签。 Introduction to GSM 1.1. BACKGROUND AND REQUIREMENTS At the beginning of the 80s it was realised that the European countries were using many different, incompatible mobile systems. At the same time, the needs for telecommunication services were remarkably increased. Due to this, CEPT (Confrence Europenne des Postes et Tlcommunications) founded a group to specify a common mobile system for Western Europe. This group was named Groupe Speciale Mobile and the system name GSM arose. The abbreviation has since been interpreted in other ways, but the most common expression nowadays is Global System for Mobile communications. At the beginning of the 90s, the lack of a common mobile system was seen to be a general, world-wide problem. This is why the GSM system has now spread also to the Eastern European countries, Africa, Asia and Australia. The USA, South America in general and Japan had made a decision to adapt to another kind of common mobile system specification which is not compatible with GSM. However Personal Communication System (PCS) which uses the same GSM technology with few variations has also been adopted in the USA. During the time the GSM system was being specified it was foreseen that national telecommunication monopolies would be disbanded. This development set some requirements concerning the GSM system specifications and these requirements are in a way built into the specifications: There should be several network operators in each country. This should lead to the tariff and service provisioning competition. This was presumed to be the best way to ensure the rapid expansion of the GSM system; the prices of the equipment would fall and the users would be able to afford to call. The system must be an open system, meaning that it should contain well defined interfaces between different system parts. This enables the equipment from several manufacturers to coexist and hence improves the cost efficiency of the system from the operators point of view. GSM networks must be built without causing any major changes to the already existing Public Switched Telephone Networks (PSTN). In addition to the above-mentioned commercial demands, some other main objectives were defined: The system must be Pan European. The system must maintain a good speech quality. 2 (12)错误 !未指定书签。 The system must use radio frequencies as efficiently as possible. The system must have high / adequate capacity. The system must be compatible with ISDN (Integrated Services Digital Network). The system must be compatible with other data communication specifications. The system must maintain good security concerning both subscriber and transmitted information. 1.2. ADVANTAGES OF GSM Due to the above-mentioned requirements set for the system, many remarkable advantages will be achieved. Roughly, these advantages are: GSM uses radio frequencies efficiently, and, due to the digital radio path, the system tolerates more intercell disturbances. The average quality of speech achieved is better than in existing analogue systems. Data transmission is supported throughout the system. Speech is encrypted and subscriber information security is guaranteed. Due to the ISDN compatibility, new services are offered compared to the analogue systems. International roaming is technically possible within all the countries concerned. The large market toughens the competition and lowers the prices both for investments and usage. 1.3. EVOLUTION OF GSM The following list highlights some important years in the short history of GSM. 1982 CEPT initiated a new system, GSM 1985 CEPT made decision on time schedule and action plan 1986 CEPT tested eight experimental systems in Paris 1987 Memorandum of Understanding (MoU), allocation of the frequencies 890-915 uplink (from mobile to base station) 935-960 downlink (from base station to mobile) 1988 European Telecommunications Standard Institute (ETSI) was created includes members from administrations, industry and user groups 1989 Final recommendations and specifications 1.7.1991 First official call in the world with GSM 1992 Australian operators were first non-European signatories of the GSM MoU 1992 New frequency allocation: GSM 1800 3 (12)错误 !未指定书签。 1710-1785 uplink 1805-1880 downlink 2.1. OPEN INTERFACES OF GSM The main idea behind the GSM specifications is to define several open interfaces which then are limiting certain parts of the GSM system. Because of this interface openness, the operator maintaining the network may obtain different parts of the network from different GSM network suppliers. Also, when an interface is open it defines strictly what is happening through the interface and this in turn strictly defines what kind of actions/procedures/functions must be implemented between the interfaces. Nowadays, GSM specifications define two truly open interfaces: The first one is between the mobile Station and the Base station. This open air interface is appropriately termed as Air interface. The second one is between the Mobile Services Switching Centre (which is the switching exchange in GSM) and the Base Station Controller. This interface is called the A interface. The two network elements just mentioned will be discussed in greater detail in later chapters. The system includes more than two interfaces defined but they are not totally open because the system specification had not been completed when the commercial systems were launched. Network Subsystem (NSS) Base Station Subsystem (BSS) Network Management Subsystem (NMS) The actual network needed for call establishing is composed of the NSS and the BSS. The BSS is a network part responsible for radio path control. Every call is connected through the BSS. The NSS is a network part taking care of call control functions. Every call is always connected by and through the NSS. The NMS is the operation and maintenance related part of the network. It is also needed for the whole network control. The network operator observes and maintains network quality and service offered through the NMS. All these three subsystems are surrounded by the above-mentioned interfaces. 4 (12)错误 !未指定书签。 A i r AO & MFigure 3.1 The three Subsystems of GSM The MS (Mobile Station) is a combination of terminal equipment and a subscriber. The terminal equipment as such is called ME (Mobile Equipment) and the subscribers data is stored to a separate module called SIM (Subscriber Identity Module). Hence, ME + SIM = MS. 1.4. DIMENSIONING CELLS A cell is the basic construction block of a GSM network. One cell is the geographical area covered by one BTS. The actual size of a cell depends on several factors: the environment, number of users, etc. Cells are grouped under Base Station Controllers (BSC). Dimensioning a cell means finding answers to two fundamental questions: How many traffic channels (TCH) does the cell need to handle and how many traffic channels are necessary? To solve these problems, i.e. to determine the traffic capacity, we have to calculate the number of Erlangs. Erlang is the measuring unit of network traffic. One Erlang equals the continuous use of a mobile device for one hour. The traffic is calculated using a simple formula:x c a l l s p e r hour a v e r a g e c o n v e r s a t i on t i m eE r l a n g s S e c o n d s ( ) ( )3600Frequency Reuse Now we have to resolve another problem. There is a limited number of frequencies available to each Base Station Subsystem and they must be distributed between the cells to ensure a balanced coverage throughout the BSS. Lets take an exercise to illustrate the situation. You are the network planner and the number of frequencies assigned to this project is 9. Your task is to distribute the frequencies in the network that is shown in the following figure with one frequency per cell. 5 (12)错误 !未指定书签。 1 234 57 896 1 234 57 896 1 234 57 896 1 234 57 896 1 234 57 896 1 234 57 896 Figure 3.1 Frequency Planning exercise Figure 3.2 Frequency reuse pattern example As you can see, the frequencies have to be reused. If you do not distribute the frequencies properly throughout the network the result will be a high level of interference caused by overlapping frequencies. To avoid this, the GSM network includes a specification of the Frequency reuse patterns, one of which is presented in figure 3.2 The next step involves the dimensioning of the Location Areas. This is carried out according to the traffic characteristics of each area. The final phase is the dimensioning of the Fixed Network on the basis of the traffic requirements and dimensioning of the entire radio network. 6 (12)错误 !未指定书签。 2. INTELLIGENT NETWORK The Intelligent Network has been made possible through developments in many fields including: signalling system no.7, stored program control exchanges, advanced software languages and powerful computers. The purpose of this section is to focus in on those parts of the network directly required for the Intelligent Network. Signalling is required for exchanges, network data bases and other intelligent nodes in the network to exchange messages related to call set up, call supervision, call connection control information needed for distributed application processing and network management information. M T P L a y e r 1M T P L a y e r 2M T P L a y e r 3S C C PI S U P T U PT C A PC o r e I N A P M A P C a l l C o n t r o l A p p l i c a t i o n sFigure 3. SS7 stack for IN The SS7 is a signalling system recommended by ITU-T and specifically designed for telephone networks. The SS7 is the generic name for a suite of protocols. These protocols are layered and closely match the Open System Interconnection (OSI) seven layer model. The lowest three layers are called the Message Transfer Part (MTP). Its function is to route a message efficiently and reliably between two signalling points in the network. Above MTP is the signalling connection control part (SCCP). The MTP together with SCCP provide most of the layer services specified in layers 1 through 3 of the OSI model. The SS7 application protocols sit immediately above MTP and SCCP. The Telephony User Part (TUP) is an application protocol for setting up and clearing (non-ISDN) telephone calls. The ISDN User part (ISUP) protocol is an application protocol designed to support ISDN calling. The Transaction Capabilities and Application part (TCAP) is an application protocol for invoking applications on a remote network element. TCAP is used for signalling between the SSP and the SCP of the Intelligent Network. It is essential therefore distinguish between functions and products in the Intelligent Network concepts. 7 (12)错误 !未指定书签。 3. 有关 GSM的介绍 3.1. 1.1背景 在 80年代初它起源于使用很多不同的不相兼容的移动系统的欧洲。在那时,电子通讯服务需求迅速的增长。正因为如此,欧洲邮电行政大会 CEPT( Conference Europe of Post and Telecommunications)成立了欧洲移动特别小组,建立全欧洲统一的蜂窝移动通信系统。这一组织称为欧洲移动特别小组,这一系统只取首字母的缩写称为 GSM。 这种表述已经改变了好多次,但时至今日最常用的表达是全球移动通信系统。 九十年代 初,一个共有的移动通信系统的缺乏是如此的明显的,世界范围内的问题。这就是为什么 GSM系统现在在东欧各国,非洲,亚洲以及澳大利亚如此广泛的传播。美利坚合众国,整个南美洲以及日本已经决定采用另一种移动通信系统标准,这种标准与 GSM不相兼容。但是个人通信系统( PCS)使用同样的 GSM技术,尽管这种技术有一点点差别,但同样在美国使用。 在 GSM 系统正在被统一的时代他就预见到国际电信将被废除。这种发展制定一些规则包括 GSM系统标准,而这些规则在某种意义上形成标准。 *在各个国家应当有很多网络运营商。这必将引起竞争和 服务提供者竞争。这无意当中形成一种保证 GSM系统快速发展的最佳方式;这种设备的价格将会下跌而用户能够负担打电话的费用。 *这种系统应该是一种公开的系统,意思是它应当包含不同的系统之间比较好比较合理的接口规范。它使得不同生产商生产的设备之间很好的符合,以使得能够从运营商的角度改善系统有效运行的费用。 *GSM网络必须建立在对已经存在的公用电话交换网( PSTN)没有产生很大主要变化的基础上。 除了上面提到的一些基本要求之外,一些其他的主要要求也被提出: 系统必须是泛欧标准。 系统必须保持好的语音通话质量。 8 (12)错误 !未指定书签。 系统 必须尽可能有效地利用频率资源。 系统必须有一个比较高的,合理的容量。 系统必须与现有的 ISDN(综合业务数字网)相兼容。 系统必须与其他数字通信标准相匹配。 系统必须具有好的安全性,不论是在用户还是信息传输都要具有安全性。 3.2. 1.2 GSM的优势 基于以上提到的要求所建立起来的系统,可以看出 GSM产生很多明显的优势。总体上说有以下这些优势: GSM更有效地利用了现有的频谱资源,基于数字传播路径,这种系统减少了小区之间的干扰。 平均语音通话质量比现有的模拟系统完成得更好。 整个系统支持数据传输。 保证语音通话质 量清晰和用户个人信息的安全。 由于与综合业务数字网相兼容,和模拟系统一样提供新的服务。 在所包含的各个国家中尽可能地实现国际漫游。 巨大的市场空间缓解了竞争并降低了投资者和用户的费用。 3.3. 1.3 GSM的发展过程 以下列出的是 GSM发展的简短历史中一些重要年份的重大历史性事件 1982年,欧洲邮电行政大会 CEPT产生一种新的系统 GSM。 1985年,欧洲邮电行政大会 CEPT决定在适当的时间采取行动。 1986年,欧洲邮电行政大会 CEPT在巴黎测试八个试验系统。 1987年, GSM谅解备忘录 (MOU),申请以下 频段 9 (12)错误 !未指定书签。 上行链路: 890MHz-915MHz (从移动台到基站) 下行链路: 935MHz-960MHz (从基站到移动台) 1988年,欧洲电信标准协会( ETSI)成立包括倡导者,工业和用户群在内的成员。 1989年,最后的建立和标准 1991年 1月 7日,世界上第一例利用 GSM的官方呼叫。 1992年,澳大利亚运营商成为第一个非欧洲的 GSM谅解备忘录 (MOU). 成员。 1992年,新的频段申请: GSM 1800MHz 上行链路: 1710MHz-1785MHz (从移动台到基站) 下行链路: 1805MHz-1880MHz (从基站到移动台) 3.4. 2 GSM接口 GSM背后的主要想法是定义一些能够限制 GSM系统的特定部分的公开接口。由于接口是公开的,运营商保证网络能够获得从不同的 GSM网络提供者那提供的网络的不同部分。同样,当接口公开,那意味着通过这些接口所发生的被严格的限制,相反的什么样的行为,产品以及功能实体应当在接口之间被提及也应该被严格的限制。 当今时代, GSM标准定义了两种真正的公开接口:第一种是移动台和基站台之间的接口。这种公开的空中接口确切的应该定义为空中接口。第二种是移动服务交换中心(在 GSM中 用于使交换改变的)和基站控制台之间的接口。这种接口称为A接口。这两种网络实体刚刚提出的将在迟一些的例会中对更多的细节进行讨论。这一系统包括多于两个接口被定义但是它们并不总是公开的,因为直到原来的系统被废除新的系统标准才完整。 10 (12)错误 !未指定书签。 网络子系统( NSS) 基站子系统( BSS) 网络控制子系统( NMS) 建立呼叫的平常网络所需要的主要由网络子系统( NSS)和基站子系统( BSS)组成。基站子系统( BSS)是负责无线路径控制的网络的一部分。每一个呼叫的建立都是通过基站子系统 BSS的连接。网络子系统( NSS)是负责呼叫控制 功能的网络的一部分。每一次呼叫总是通过网络子系统 NSS建立连接的。网络控制子系统( NMS)是网络部分相关的执行和保证。它同样也需要整个网络的控制。网络规划者需要和保持网络的质量和整个网络控制子系统( NMS)提供服务。所有的这三个子系统由上面所提到的接口所连接。 A i r AO & M图 3-1 GSM的三大组成部分 移动台 MS是由终端设备和用户组成。像这样的终端设备叫着移动设备,而用户数据储存在一个独立的 SIM卡(用户识别卡)中。因此, ME+SIM=MS. 3.5. 2.1 小区分裂 一个小区是 GSM网络的基本组成模块。一个小区由一个 BTS所覆盖的地理范围组成。一个小区的大小取决于许多因素:环境
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市商业综合体采购合同
- 软件服务行业软件测试与质量保障方案
- 产品销售及代理协议书
- 债权债务转让协议书
- 电焊劳务承包协议
- 公厕保洁承包合同协议书
- 自考行政管理社会热点试题及答案
- 超市商品陈列与促销管理方案
- 股东权益保障出资证明书(6篇)
- 农村劳务输出与管理服务协议
- 前列腺增生症患者围手术期的护理
- 五防系统调试报告
- 日语综合教程第六册 单词表
- 在建项目雨季施工(防汛)安全隐患排查表
- 《广东省普通高中学生档案》模板
- GB/T 7715-2014工业用乙烯
- GB/T 40848-2021饲料原料压片玉米
- GB/T 3715-2007煤质及煤分析有关术语
- GB/T 2-2016紧固件外螺纹零件末端
- GB/T 12237-2021石油、石化及相关工业用的钢制球阀
- GB/T 1094.11-2007电力变压器第11部分:干式变压器
评论
0/150
提交评论