免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
空间几何体的三视图、表面积及体积(40分钟)一、选择题1.(2013成都模拟)已知正四面体的俯视图如图所示,其中四边形abcd是边长为2cm的正方形,则这个四面体的主视图的面积为()a.2cm2b.2cm2c.4cm2d.8cm22.(2013新课标全国卷)某几何体的三视图如图所示,则该几何体的体积为()a.16+8b.8+8c.16+16d.8+163.(2013广州模拟)一个几何体的三视图如图所示,其中正(主)视图是一个正三角形,则该几何体的外接球的表面积为()a.33b.163c.263d.323274.(2013大同模拟)如图1,边长为2的正方形abcd中,e,f分别是ab,bc的中点,将ade,cdf,bef折起,使a,c,b三点重合于g,所得三棱锥g-def的俯视图如图2,则该三棱锥正视图的面积为()a.12b.23c.223d.225.(2013广东高考)某四棱台的三视图如图所示,则该四棱台的体积是()a.4b.143c.163d.6二、填空题6.某四棱锥的三视图如图所示,该四棱锥的体积是.7.(2013江苏高考)如图,在三棱柱a1b1c1-abc中,d,e,f分别是ab,ac,aa1的中点,设三棱锥f-ade的体积为v1,三棱柱a1b1c1-abc的体积为v2,则v1v2=.8.(2013重庆模拟)一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的体积是m3.三、解答题9.下列三个图中,左边是一个正方体截去一个角后所得多面体的直观图.右边两个是其正(主)视图和侧(左)视图.(1)请在正(主)视图的下方,按照画三视图的要求画出该多面体的俯视图(不要求叙述作图过程).(2)求该多面体的体积(尺寸如图).10.已知四面体abcd(图1),将其沿ab,ac,ad剪开,展成的平面图形正好是图2所示的直角梯形a1a2a3d(梯形的顶点a1,a2,a3重合于四面体的顶点a).(1)证明:abcd.(2)当a1d=10,a1a2=8时,求四面体abcd的体积.11.如图,在三棱锥p-abc中,pa平面abc,acbc,d为侧棱pc的中点,它的正(主)视图和侧(左)视图如图所示.(1)证明:ad平面pbc.(2)求三棱锥d-abc的体积.(3)在acb的平分线上确定一点q,使得pq平面abd,并求此时pq的长.答案解析1.【解析】选b.由俯视图可知,该四面体可看作如图所示的正方体中的一个几何体amnc,该正方体的棱长为2,故四面体的主视图为三角形,其面积为12222=22(cm2).2.【解题提示】观察三视图,根据三视图确定几何体的构成,利用圆柱及长方体的体积公式求解.【解析】选a.由三视图可知,该几何体是一个长方体和一个半圆柱组成的几何体,所以体积为12224+224=16+8.3.【解析】选b.由题意知,外接球球心在侧视图的高上,设为o,半径为r,则r2=(3-r)2+1,解得r=233,从而s=4r2=163.4.【解析】选b.设正视图的高为h,vg-def=vd-gef=13122322h=1312112,得h=23,所以正视图s=22312=23.5.【解析】选b.四棱台的上下底面均为正方形,两底面边长和高分别为1,2,2,v棱台=13(s上+s下+s上s下)h=13(1+4+14)2=143.6.【解析】由三视图可知,四棱锥的高为2,底面为直角梯形abcd.其中dc=2,ab=3,bc=3,所以四棱锥的体积为13(2+3)322=533.答案:533【误区警示】解答本题时易因不能确定四棱锥的底面边长而无法求解.7.【解析】设三棱柱的底面abc的面积为s,三棱柱的高为h,则其体积为v2=sh.因为d,e分别为ab,ac的中点,所以ade的面积等于14s,又因为f为aa1的中点,所以三棱锥f-ade的高等于12h,于是三棱锥f-ade的体积v1=1314s12h=124sh=124v2,故v1v2=124.答案:1248.【解析】由三视图可知,该几何体是一个三棱锥,高为2m,底面积为1222=2(m2).所以其体积为1322=43(m3).答案:439.【解析】(1)作出俯视图如图所示.(2)依题意,该多面体是由一个正方体(abcd-a1b1c1d1)截去一个三棱锥(e-a1b1d1)得到的,所以截去的三棱锥体积ve-a1b1d1=13sa1b1d1a1e=1312221=23,正方体体积v正方体ac1=23=8,所以所求多面体的体积v=8-23=223.【变式备选】如图,在四棱锥p-abcd中,底面abcd是矩形,pa平面abcd,ap=ab,bp=bc=2,e,f分别是pb,pc的中点.(1)证明:ef平面pad.(2)求三棱锥e-abc的体积v.【解析】(1)在pbc中,e,f分别是pb,pc的中点,所以efbc.又bcad,所以efad,又因为ad平面pad,ef平面pad,所以ef平面pad.(2)过e作egpa交ab于点g,则eg平面abcd,且eg=12pa.在pab中,ap=ab,pab=90,bp=2,所以ap=ab=2,eg=22.所以sabc=12abbc=1222=2,所以v=13sabceg=13222=13.10.【解析】(1)在四面体abcd中,abac,abad,acad=aab平面acdabcd.(2)在题图2中作dea2a3于e.因为a1a2=8,所以de=8.又因为a1d=a3d=10,所以ea3=6,a2a3=10+6=16.又a2c=a3c,所以a3c=8,即题图1中ac=8,ad=10,由a1a2=8,a1b=a2b得题图1中ab=4,所以sacd=sa3cd=12dea3c=1288=32.又因为ab平面acd,所以vb-acd=13324=1283.11.【解析】(1)因为pa平面abc,所以pabc,又acbc,paac=c,所以bc平面pac,所以bcad.由三视图可得,在pac中,pa=ac=4,且d为pc中点,所以adpc,又bcpc=c,所以ad平面pbc.(2)由三视图可得bc=4,由(1)知adc=90,bc平面pac,又三棱锥d-abc的体积即为三棱锥b-adc的体积,所以,所求三棱锥的体积v=131222224=163.(3)取ab的中点o,连接co并延长至q,使得cq=2co,点q
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年信息流广告素材创意方法
- 2026年农产品品牌包装设计策略
- 无人机维修调试与校验规范手册
- 2026年农产品国际贸易规则解析
- 2026年氢能储运安全技术规范培训
- 关于鼓励小微企业吸纳劳动者就业的意见
- 职业压力管理的医疗化干预体系
- 职业健康远程随访的医患协同管理策略
- 职业健康监护中的标准化培训效果评估
- 院长培训教学课件
- 2025大模型安全白皮书
- 2026国家国防科技工业局所属事业单位第一批招聘62人备考题库及1套参考答案详解
- 工程款纠纷专用!建设工程施工合同纠纷要素式起诉状模板
- 2026湖北武汉长江新区全域土地管理有限公司招聘3人笔试备考题库及答案解析
- 110(66)kV~220kV智能变电站设计规范
- (正式版)DB44∕T 2784-2025 《居家老年人整合照护管理规范》
- 2025年美国心脏病协会心肺复苏和心血管急救指南(中文完整版)
- 民宿入股合伙人合同范本
- 上海 卫生健康数据分类分级要求
- 《质量管理体系成熟度评价指南》
- 辽宁大学第八届校学术委员会认定的学术期刊分类标准及目录
评论
0/150
提交评论