全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2014高中数学精讲精练 第二章 函数映射特殊化函数具体化一般化概念图像表 示 方 法定义域 值域单调性 奇偶性基本初等函数幂函数指数函数对数函数二次函数指数对数互 逆函数与方程应用问题【知识导读】【方法点拨】函数是中学数学中最重要,最基础的内容之一,是学习高等数学的基础高中函数以具体的幂函数,指数函数,对数函数和三角函数的概念,性质和图像为主要研究对象,适当研究分段函数,含绝对值的函数和抽象函数;同时要对初中所学二次函数作深入理解1.活用“定义法”解题定义是一切法则与性质的基础,是解题的基本出发点利用定义,可直接判断所给的对应是否满足函数的条件,证明或判断函数的单调性和奇偶性等2.重视“数形结合思想”渗透“数缺形时少直观,形缺数时难入微”当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议:画个图像!利用图形的直观性,可迅速地破解问题,乃至最终解决问题3.强化“分类讨论思想”应用分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”4.掌握“函数与方程思想”函数与方程思想是最重要,最基本的数学思想方法之一,它在整个高中数学中的地位与作用很高函数的思想包括运用函数的概念和性质去分析问题,转化问题和解决问题第1课 函数的概念【考点导读】1.在体会函数是描述变量之间的依赖关系的重要数学模型的基础上,通过集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域2.准确理解函数的概念,能根据函数的三要素判断两个函数是否为同一函数【基础练习】1设有函数组:,;,;,;,;,其中表示同一个函数的有_ y122xo122xyo122xoy2.设集合,从到有四种对应如图所示:122xoy其中能表示为到的函数关系的有_ 3.写出下列函数定义域:(1) 的定义域为_; (2) 的定义域为_;(3) 的定义域为_; (4) 的定义域为_且且4已知三个函数:(1); (2); (3)写出使各函数式有意义时,的约束条件: (1)_; (2)_; (3)_5.写出下列函数值域:(1) ,;值域是(2) ; 值域是(3) , 值域是【范例解析】例1.设有函数组:,;,;,;,其中表示同一个函数的有分析:判断两个函数是否为同一函数,关键看函数的三要素是否相同解:在中,的定义域为,的定义域为,故不是同一函数;在中,的定义域为,的定义域为,故不是同一函数;是同一函数点评:两个函数当它们的三要素完全相同时,才能表示同一函数而当一个函数定义域和对应法则确定时,它的值域也就确定,故判断两个函数是否为同一函数,只需判断它的定义域和对应法则是否相同即可例2.求下列函数的定义域: ; ;解:(1) 由题意得:解得且或且,故定义域为 由题意得:,解得,故定义域为例3.求下列函数的值域:(1),;(2);(3)分析:运用配方法,逆求法,换元法等方法求函数值域(1) 解:,函数的值域为;(2) 解法一:由,则,故函数值域为解法二:由,则,故函数值域为(3)解:令,则,当时,故函数值域为点评:二次函数或二次函数型的函数求值域可用配方法;逆求法利用函数有界性求函数的值域;用换元法求函数的值域应注意新元的取值范围【反馈演练】1函数f(x)的定义域是_2函数的定义域为_3. 函数的值域为_4. 函数的值域为_5函数的定义域为_6.记函数f(x)=的定义域为a,g(x)=lg(xa1)(2ax)(a1) 的定义域为b(1) 求a;(2) 若ba,求实数a的取值范围解:(1)由20,得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GB-T 40421-2021健康信息学 消息与通信 DICOM持久对象的网络访问》专题研究报告
- 2025年中国保险消费者研究报告
- 2024年执业药师(西药)《药理学》考前试题(一)及答案
- 淡水鱼类养殖工安全综合知识考核试卷含答案
- 《GBT 19215.4-2017 电气安装用电缆槽管系统 第 2 部分:特殊要求 第 4 节:辅助端》专题研究报告
- 镁精炼工岗后模拟考核试卷含答案
- 船舶货运员操作竞赛考核试卷含答案
- 电工合金冷变形工岗前内部控制考核试卷含答案
- 印后成型工诚信品质知识考核试卷含答案
- 工业车辆装配调试工安全教育水平考核试卷含答案
- 射血分数保留的心力衰竭诊断与治疗中国专家共识 2025解读
- 全民反恐共创平安课件
- DB51∕T 705-2023 四川主要造林树种苗木质量分级
- JJF1101-2019环境试验设备温度、湿度校准规范-(高清现行)
- 通达信函数大全整理
- 小升初英语衔接存在的问题及其对策优秀获奖科研论文
- 煤矿矿井废水处理设计方案
- 《数字电路逻辑设计》--逻辑函数及其化简练习习题
- 列管式换热器课程设计
- dacromet达克罗技术
- 混凝土含气量试验记录表(气压法)
评论
0/150
提交评论