中考数学典型习题讲解(二).doc_第1页
中考数学典型习题讲解(二).doc_第2页
中考数学典型习题讲解(二).doc_第3页
中考数学典型习题讲解(二).doc_第4页
中考数学典型习题讲解(二).doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学典型习题讲解(二)1、关于x的一元二次方程(a6)x28x+9=0有实根(1)求a的最大整数值;(2)当a取最大整数值时,求出该方程的根;求的值解:(1)根据题意=644(a6)90且a60,解得a且a6,所以a的最大整数值为7;(2)当a=7时,原方程变形为x28x+9=0,=6449=28,x=,x1=4+,x2=4;x28x+9=0,x28x=9,所以原式=2x2=2x216x+=2(x28x)+=2(9)+=2、如图,在等腰梯形ABCD中,已知AD/BC,AB=DC,AC与BD交于点O,廷长BC到E,使得CE=AD,连接DE。(1)求证:BD=DE。(2)若ACBD,AD=3,=16,求AB的长。(1)证明:ADBC,CE=AD,四边形ACED是平行四边形,AC=DE,四边形ABCD是等腰梯形,ADBC,AB=DC,AC=BD,BD=DE(2)解:过点D作DFBC于点F,四边形ACED是平行四边形,CE=AD=3,ACDE,ACBD,BDDE,BD=DE,SBDE=BDDE=BD2=BEDF=(BC+CE)DF=(BC+AD)DF=S梯形ABCD=16,BD=4,BE=BD=8,DF=BF=EF=BE=4,CF=EF-CE=1,由勾股定理得AB=CD=3、如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在图的半径的活动。小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径。解:小刚身高1.6米,测得其影长为2.4米,8米高旗杆DE的影子为:12m,测得EG的长为3米,HF的长为1米,GH=12-3-1=8(m),GM=MH=4m如图,设小桥的圆心为O,连接OM、OG设小桥所在圆的半径为r,MN=2m,OM=(r-2)m在RtOGM中,由勾股定理得:OG2=OM2+42,r2=(r-2)2+16,解得:r=5,答:小桥所在圆的半径为5m4、分别以ABCD(CDA90)的三边AB,CD,DA为斜边作等腰直角三角形,ABE,CDG,ADF(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF请判断GF与EF的关系(只写结论,不需证明);(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由解:(1)四边形ABCD是平行四边形,AB=CD,DAB+ADC=180,ABE,CDG,ADF都是等腰直角三角形,DG=CG=AE=BE,DF=AF,CDG=ADF=BAE=45,GDF=GDC+CDA+ADF=90+CDA,EAF=360BAEDAFBAD=270(180CDA)=90+CDA,FDG=EAF,在EAF和GDF中,EAFGDF(SAS),EF=FG,EFA=DFG,即GFD+GFA=EFA+GFA,GFE=90,GFEF;(2)GFEF,GF=EF成立;理由:四边形ABCD是平行四边形,AB=CD,DAB+ADC=180,ABE,CDG,ADF都是等腰直角三角形,DG=CG=AE=BE,DF=AF,CDG=ADF=BAE=45,BAE+FDA+EAF+ADF+FDC=180,EAF+CDF=45,CDF+GDF=4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论