




免费预览已结束,剩余7页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省肇庆四中2014-2015学年高二上学期第二次月考数学试卷 (文科)一、选择题1(5分)圆锥的底面半径是3,高是4,则它的侧面积是()ab12c15d302(5分)已知空间两点a(6,0,1),b(3,5,7),则它们之间的距离为()ab5c70d63(5分)设k是直线4x+3y5=0的斜率,则k等于()abcd4(5分)如果直线ax+2y+2=0与直线3xy2=0平行,那么实数a等于()a6b3cd5(5分)方程x2+y2+2axby+c=0表示圆心为c(2,3),半径为3的圆,则a、b、c的值依次为()a2、6、4b2、6、4c2、6、4d2、6、46(5分)直线3x4y+1=0被圆(x3)2+y2=9截得的弦长为()ab4cd27(5分)若直线(1+a)x+y1=0与圆x2+y2+4x=0相切,则a的值为()a1或1b或c1d8(5分)已知直线l方程为2x5y+10=0,且在x轴上的截距为a,在y轴上的截距为b,则|a+b|等于()a3b7c10d59(5分)直线3x+4y13=0与圆(x2)2+(y3)2=1的位置关系是()a相离b相交c相切d无法判定10(5分)圆c1:(x+2)2+(y2)2=1与圆c2:(x2)2+(y5)2=16的位置关系是()a外离b相交c内切d外切二、填空题(本大题共4小题,每小题5分,共20分)11(5分)以点a(1,4)、b(3,2)为直径的两个端点的圆的方程为12(5分)过点p(1,2)且与圆(x+3)2+(y2)2=4相切的直线方程是13(5分)圆x2+y2=1上的点到直线3x+4y25=0距离的最小值为14(5分)若点p(2,1)为圆(x1)2+y2=25的弦ab的中点,则直线ab的方程是三、解答题(本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤)15(12分)已知三角形abc的顶点坐标为a(1,5)、b(2,1)、c(4,3),m是bc边上的中点(1)求ab边所在的直线方程;(2)求bc边上的垂直平分线所在直线方程;(3)求以线段am为直径的圆的方程16(14分)已知两圆x2+y210x10y=0,x2+y2+6x2y40=0,求(1)它们的公共弦所在直线的方程;(2)公共弦长17(14分)求满足下列条件的圆的方程(1)求过点m(5,2),n(3,2)且圆心在直线y=2x3上的圆的方程;(2)过圆x2+y2x+y2=0和x2+y2=5的交点,且圆心在直线3x+4y1=0上的圆的方程为18(12分)已知:在空间四边形abcs中,ac=as,bc=bs,求证:abcs19(14分)如图,在直三棱柱abca1b1c1中,ac=3,bc=4,ab=5,点d是ab的中点(1)求证:acbc1; (2)求证:ac1平面cdb120(14分)在abc中,已知b在原点,c点坐标为(0,2),且,求点a的轨迹方程,并说明轨迹是什么图形广东省肇庆四中2014-2015学年高二上学期第二次月考数学试卷(文科)参考答案与试题解析一、选择题1(5分)圆锥的底面半径是3,高是4,则它的侧面积是()ab12c15d30考点:旋转体(圆柱、圆锥、圆台) 专题:计算题分析:求出圆锥的底面周长,圆锥的母线长,然后由公式求出侧面积解答:解:由题意圆锥的底面周长为:6,母线长为:=5,圆柱的侧面积为:=15故选c点评:本题考查圆锥的侧面积的求法,考查计算能力,基础题2(5分)已知空间两点a(6,0,1),b(3,5,7),则它们之间的距离为()ab5c70d6考点:空间两点间的距离公式 专题:空间位置关系与距离分析:直接利用空间两点间距离公式求解即可解答:解:空间两点a(6,0,1),b(3,5,7),则它们之间的距离为:=故选:a点评:本题考查空间两点间距离构公式的应用,基本知识的考查3(5分)设k是直线4x+3y5=0的斜率,则k等于()abcd考点:直线的斜率 专题:直线与圆分析:直线化为斜截式方程,即可求出直线的斜率解答:解:直线3x+4y5=0的斜截式方程为:y=x+,所以直线的斜率为:故选:a点评:本题考查直线的斜率的求法,直线方程的形式的转化,基本知识的考查4(5分)如果直线ax+2y+2=0与直线3xy2=0平行,那么实数a等于()a6b3cd考点:直线的一般式方程与直线的平行关系 专题:计算题分析:根据它们的斜率相等,可得 =3,解方程求a的值解答:解:直线ax+2y+2=0与直线3xy2=0平行,它们的斜率相等,=3,a=6故选a点评:本题考查两直线平行的性质,两直线平行,斜率相等5(5分)方程x2+y2+2axby+c=0表示圆心为c(2,3),半径为3的圆,则a、b、c的值依次为()a2、6、4b2、6、4c2、6、4d2、6、4考点:圆的一般方程 专题:直线与圆分析:由已知得,由此能求出结果解答:解:方程x2+y2+2axby+c=0表示圆心为c(2,3),半径为3的圆,解得a=2,b=6,c=4故选:b点评:本题考查圆的方程的应用,是基础题,解题时要注意圆的性质的合理运用6(5分)直线3x4y+1=0被圆(x3)2+y2=9截得的弦长为()ab4cd2考点:直线与圆相交的性质 专题:计算题;直线与圆分析:先根据圆的方程求得圆的圆心坐标和半径,进而利用点到直线的距离求得圆心到直线的距离,进而利用勾股定理求得被截的弦的一半,则弦长可求解答:解:根据圆的方程可得圆心为(3,0),半径为3则圆心到直线的距离为=2弦长为2=2故选c点评:本题主要考查了直线与圆相交的性质解题的关键是利用数形结合的思想,通过半径和弦构成的三角形和圆心到弦的垂线段,利用勾股定理求得答案7(5分)若直线(1+a)x+y1=0与圆x2+y2+4x=0相切,则a的值为()a1或1b或c1d考点:圆的切线方程 专题:直线与圆分析:由圆的标准方程求出圆心坐标和半径,根据圆的切线的性质,圆心到直线的距离等于半径,就可求出a的值解答:解:圆x2+y2+4x=0的圆心坐标为(2,0),半径r=2直线(1+a)x+y1=0与圆x2+y2+4x=0相切,圆心到直线的距离等于半径即=2,解得a=,故选:d点评:本题主要考查了圆的切线的几何性质,以及点到圆的距离公式的应用考查转化思想的应用8(5分)已知直线l方程为2x5y+10=0,且在x轴上的截距为a,在y轴上的截距为b,则|a+b|等于()a3b7c10d5考点:直线的截距式方程 专题:计算题分析:直接利用直线方程求出在x轴上的截距为a,在y轴上的截距为b,然后求解|a+b|解答:解:直线l方程为2x5y+10=0,且在x轴上的截距为a=5,在y轴上的截距为b=2,所以|a+b|=|5+2|=3故选a点评:本题考查直线在坐标轴上的截距的求法,直线方程的应用,考查计算能力9(5分)直线3x+4y13=0与圆(x2)2+(y3)2=1的位置关系是()a相离b相交c相切d无法判定考点:直线与圆的位置关系 专题:计算题分析:由圆的方程找出圆心坐标和圆的半径r,然后利用点到直线的距离公式求出圆心到已知直线的距离d,发现d=r,故直线与圆相切解答:解:由圆的方程得到:圆心坐标为(2,3),半径r=1,所以圆心到直线3x+4y13=0的距离d=1=r,则直线与圆的位置关系为相切故选c点评:此题考查了直线与圆的位置关系,以及点到直线的距离公式其中直线与圆的位置关系的判定方法为:当0dr时,直线与圆相交;当d=r时,直线与圆相切;当dr时,直线与圆相离10(5分)圆c1:(x+2)2+(y2)2=1与圆c2:(x2)2+(y5)2=16的位置关系是()a外离b相交c内切d外切考点:直线与圆的位置关系 专题:计算题分析:先根据圆的标准方程得到分别得到两圆的圆心坐标及两圆的半径,然后利用圆心之间的距离d与两个半径相加、相减比较大小即可得出圆与圆的位置关系解答:解:由圆c1:(x+2)2+(y2)2=1与圆c2:(x2)2+(y5)2=16得:圆c1:圆心坐标为(2,2),半径r=1;圆c2:圆心坐标为(2,5),半径r=4两个圆心之间的距离d=5,而d=r+r,所以两圆的位置关系是外切故选d点评:考查学生会根据d与r+r及rr的关系判断两个圆的位置关系,会利用两点间的距离公式进行求值二、填空题(本大题共4小题,每小题5分,共20分)11(5分)以点a(1,4)、b(3,2)为直径的两个端点的圆的方程为(x1)2+(y3)2=5考点:圆的标准方程 专题:直线与圆分析:由条件求得线段ab的中点c的坐标,即为所求的圆心坐标,再求得ac的长,即为所求圆的半径,从而求得要求的圆的方程解答:解:圆的圆心为线段ab的中点c(1,3),半径为ac=,要求的圆的方程为 (x1)2+(y3)2=5,故答案为:(x1)2+(y3)2=5点评:本题主要考查求圆的标准方程的方法,求出圆心坐标和半径的值,是解题的关键,属于基础题12(5分)过点p(1,2)且与圆(x+3)2+(y2)2=4相切的直线方程是x=1考点:圆的切线方程 专题:计算题;分类讨论;直线与圆分析:求出圆的圆心和半径,确定点p在圆上,由切线的性质,得到切线的斜率,进而得到切线方程解答:解:圆(x+3)2+(y2)2=4的圆心c为(3,2),半径r为2,由于点p到圆心c的距离为|1+3|=2,即p在圆上,由于直线pc的斜率为0,则切线的斜率不存在时,切线的方程为:x=1,故答案为:x=1点评:本题考查求圆的切线方程的方法,注意考虑点与圆的位置关系,属于基础题13(5分)圆x2+y2=1上的点到直线3x+4y25=0距离的最小值为4考点:直线与圆的位置关系 专题:计算题;数形结合分析:圆心(0,0)到直线3x+4y25=0的距离d=,圆x2+y2=1上的点到直线3x+4y25=0距离的最小值是ac=5r,从而可求解答:解:圆心(0,0)到直线3x+4y25=0的距离d=圆x2+y2=1上的点到直线3x+4y25=0距离的最小值是ac=5r=51=4故答案为:4点评:本题主要考查了直线与圆的位置关系的应用,解题的关键是把所求的距离转化为求圆心到直线的距离,要注意本题中的bc是满足圆上的点到直线的距离的最大值14(5分)若点p(2,1)为圆(x1)2+y2=25的弦ab的中点,则直线ab的方程是xy3=0考点:直线与圆相交的性质 专题:计算题分析:求出圆心c的坐标,得到pc的斜率,利用中垂线的性质求得直线ab的斜率,点斜式写出ab的方程,并化为一般式解答:解:圆(x1)2+y2=25的圆心c(1,0),点p(2,1)为 弦ab的中点,pc的斜率为 =1,直线ab的斜率为1,点斜式写出直线ab的方程 y+1=1(x2),即 xy3=0,故答案为 xy3=0点评:本题考查直线和圆相交的性质,线段的中垂线的性质,用点斜式求直线的方程的方法三、解答题(本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤)15(12分)已知三角形abc的顶点坐标为a(1,5)、b(2,1)、c(4,3),m是bc边上的中点(1)求ab边所在的直线方程;(2)求bc边上的垂直平分线所在直线方程;(3)求以线段am为直径的圆的方程考点:直线和圆的方程的应用 专题:计算题;直线与圆分析:(1)利用两点式或点斜式求直线ab的方程;(2)求出m的坐标,kbc=,即可求bc边上的垂直平分线所在直线方程;(3)求出圆心和半径,可求圆的方程解答:解:(1)因为a(1,5),b(2,1),所以由两点式得ab的方程为,整理得y=6x+11(2)因为m是bc的中点,所以m(1,1),因为kbc=,所以bc边上的垂直平分线所在直线方程为y1=(x1),即3x+2y5=0;(3)|am|=2,所以圆的半径为所以am的中点为(0,3),所以以线段am为直径的圆的方程为x2+(y3)2=5点评:本题主要考查了直线的方程,圆的标准方程以及两点间的坐标公式,综合性较强,要求熟练掌握对应的公式16(14分)已知两圆x2+y210x10y=0,x2+y2+6x2y40=0,求(1)它们的公共弦所在直线的方程;(2)公共弦长考点:相交弦所在直线的方程 专题:计算题分析:(1)利用圆系方程直接求出相交弦所在直线方程;(2)通过半弦长,半径,弦心距的直角三角形,求出半弦长,即可得到公共弦长解答:解:(1)x2+y210x10y=0,;x2+y2+6x2y40=0;得:2x+y5=0为公共弦所在直线的方程;(2)弦心距为:=,弦长的一半为,公共弦长为:点评:本题是中档题,考查两个圆的位置关系,相交弦所在的直线方程,公共弦长的求法,考查计算能力,2015届高考作为小题出现17(14分)求满足下列条件的圆的方程(1)求过点m(5,2),n(3,2)且圆心在直线y=2x3上的圆的方程;(2)过圆x2+y2x+y2=0和x2+y2=5的交点,且圆心在直线3x+4y1=0上的圆的方程为考点:圆的标准方程 专题:直线与圆分析:(1)根据垂径定理可知圆心在线段mn的垂直平分线上,所以利用m与n的坐标求出垂直平分线的方程与已知直线y=2x3联立即可求出圆心坐标,然后利用两点间的距离公式求出圆心到m的距离即可求出半径,然后根据圆心和半径写出圆的方程(2)根据题意可设所求圆的方程为x2+y2x+y2+(x2+y25)=0(1),再求出圆心坐标为 (,),圆心在直线3x+4y1=0上,所以将圆心的坐标代入中心方程可得的值,进而求出圆的方程解答:解:(1)设圆心为(x,y),而圆心在线段mn的垂直平分线x=4上又圆心在直线y=2x3上,所以联立得,解得圆心为(4,5),r=,要求的圆的方程为(x4)2+(y5)2=10(2)设所求圆的方程为x2+y2x+y2+(x2+y25)=0(1),即整理可得,x2+y2x+y,所以可知圆心坐标为(,)因为圆心在直线3x+4y1=0上,所以可得341=0,解得=将= 代入所设方程并化简可得所求圆的方程为:x2+y2+2x2y11=0点评:本题主要考查学生会求两条直线的交点坐标,会利用两点间的距离公式求线段的长,会根据圆心与半径写出圆的方程;还考查了圆与圆的位置关系,以及利用“圆系”方程的方法求圆的方程,属于基础题18(12分)已知:在空间四边形abcs中,ac=as,bc=bs,求证:abcs考点:空间中直线与直线之间的位置关系 专题:空间位置关系与距离分析:取sc中点o,连结bo,ao,由已知条件推导出sc平面abo,由此能证明abcs解答:证明:取sc中点o,连结bo,ao,ac=as,bc=bs,aosc,bosc,又aobo=o,sc平面abo,ab平面abo,abcs点评:本题考查异面直线垂直的证明,是基础题,解题时要注意空间思维能力的培养19(14分)如图,在直三棱柱abca1b1c1中,ac=3,bc=4,ab=5,点d是ab的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版恋爱期间双方婚姻筹备及规划协议书
- 2025年工业自动化电气设备升级改造项目合同
- 2025版温泉度假村温泉资源开发利用合同范本
- 2025版塔吊安装工程设计与施工合同
- 2025产品陈列与专业展览服务合作协议
- 2025年大学兼职教师教学评估与教学质量提升协议
- 2025版导演劳务输出及收益分配合同范本
- 2025版汽车抵押贷款合同范本下载
- 2025版金融行业退休员工返聘合同示范文本
- 2025年游乐园场地租赁及游乐服务合同范本
- 2025版电商平台入驻及佣金分成合作协议
- 中国黄金集团招聘面试经典题及答案
- 2025年智能家居产业互联互通标准与产业发展现状及问题研究报告
- 感染性心内膜炎术后护理查房
- 2025年领导干部政治理论知识必考题库及答案
- 2025年提取公积金租房合同范本
- 推理能力题目及答案
- 2025年湖南省社区工作者招聘考试(公共基础知识和写作)历年参考题库含答案详解(5套)
- 2025年部编版新教材语文七年级上册教学计划(含进度表)
- 湖北省武汉市武昌区重点名校2026届中考语文全真模拟试题含解析
- 2.4抽象函数的周期性与对称性-讲义(原卷版)
评论
0/150
提交评论