高考数学一轮复习 第九章 平面解析几何 第七节 抛物线课件 文.ppt_第1页
高考数学一轮复习 第九章 平面解析几何 第七节 抛物线课件 文.ppt_第2页
高考数学一轮复习 第九章 平面解析几何 第七节 抛物线课件 文.ppt_第3页
高考数学一轮复习 第九章 平面解析几何 第七节 抛物线课件 文.ppt_第4页
高考数学一轮复习 第九章 平面解析几何 第七节 抛物线课件 文.ppt_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第七节抛物线 总纲目录 教材研读 1 抛物线的概念 考点突破 2 抛物线的标准方程和几何性质 考点二抛物线的定义及其应用 考点一抛物线的标准方程及其几何性质 考点三焦点弦问题 考点四直线与抛物线的位置关系 1 抛物线的概念平面内与一个定点f和一条定直线l l不经过点f 距离 相等的点的轨迹叫做抛物线 点f叫做抛物线的 焦点 直线l叫做抛物线的 准线 教材研读 2 抛物线的标准方程和几何性质 抛物线的几个常用结论设ab是过抛物线y2 2px p 0 焦点f的弦 若a x1 y1 b x2 y2 则 1 x1x2 y1y2 p2 2 af bf 弦长 ab x1 x2 p 为弦ab的倾斜角 3 4 以弦ab为直径的圆与准线相切 1 若点p到点f 0 2 的距离比它到直线y 4 0的距离小2 则p的轨迹方程为 a y2 8xb y2 8xc x2 8yd x2 8y 答案cp到f 0 2 的距离比它到直线y 4 0的距离小2 因此p到f 0 2 的距离与它到直线y 2 0的距离相等 故p的轨迹是以f为焦点 y 2为准线的抛物线 所以p的轨迹方程为x2 8y c 2 2015北京海淀一模 抛物线x2 4y的焦点到准线的距离为 a b 1c 2d 4 答案c由抛物线x2 4y得2p 4 p 2 所以焦点到准线的距离为2 c 3 2018北京丰台期末 已知抛物线y2 4x的焦点为f 点a在y轴上 线段af的中点b在抛物线上 则 af a 1b c 3d 6 答案c设点a 0 y0 由抛物线y2 4x知f 1 0 则点b的坐标为 点b在抛物线上 4 2 8 af 3 故选c c 4 2016北京海淀一模 已知点p x0 y0 在抛物线w y2 4x上 且点p到w的准线的距离与点p到x轴的距离相等 则x0的值为 a b 1c d 2 答案b由题意得点p到准线x 1的距离为x0 1 点p到x轴的距离为 y0 y0 x0 1 又 4x0 x0 1 b 5 2015北京海淀二模 以坐标原点为顶点 1 0 为焦点的抛物线的方程为 y2 4x 6 2017北京海淀一模 若抛物线y2 2px的准线经过双曲线x2 1的左焦点 则实数p 4 典例1 1 2017北京朝阳一模 设抛物线y2 8x的焦点为f 准线为l p为抛物线上一点 pa l a为垂足 如果直线af的斜率为 那么 pf a 8b 16c 4d 8 2 2016北京朝阳期末 设斜率为2的直线l过抛物线y2 ax a 0 的焦点f 且与y轴交于点a 若 oaf o为坐标原点 的面积为4 则抛物线方程为 a y2 4xb y2 4xc y2 8xd y2 8x 考点一抛物线的标准方程及其几何性质 考点突破 答案 1 a 2 c 解析 1 设p x0 y0 由题意知a 2 y0 pa 2 x0 f 2 0 直线af的斜率为 点f到准线的距离为p 4 af的倾斜角为60 af 8 af 2 2 2 2 64 48 又 8x0 x0 6 pa 2 x0 8 由抛物线定义可知 pf pa 8 故选a 2 当a 0时 f 则l y 2 a s of oa 4 a 8 当a 0时 f 则l y 2 a s of oa 4 a 8 抛物线方程为y2 8x 方法技巧 1 抛物线的标准方程有四种不同的形式 要掌握焦点到准线的距离 顶点到准线 焦点的距离 通径长与标准方程中系数2p的关系 2 求标准方程要先确定形式 必要时要进行分类讨论 标准方程有时可设为y2 mx或x2 my m 0 3 焦点到准线的距离简称为焦准距 抛物线y2 2px p 0 上的点常设为 1 1已知直线l过抛物线c的焦点 且与c的对称轴垂直 l与c交于a b两点 ab 12 p为c的准线上一点 则 abp的面积为 a 18b 24c 36d 48 答案c不妨设抛物线方程为y2 2px p 0 当x 时 y p p 6 又p到直线ab的距离为p s abp 12 6 36 c 1 2若抛物线的焦点为直线3x 4y 12 0与坐标轴的交点 求抛物线的标准方程 解析对于直线方程3x 4y 12 0 令x 0 得y 3 令y 0 得x 4 所以抛物线的焦点坐标为 0 3 或 4 0 当焦点坐标为 0 3 时 设方程为x2 2py p 0 则 3 所以p 6 此时抛物线的标准方程为x2 12y 当焦点坐标为 4 0 时 设方程为y2 2px p 0 则 4 所以p 8 此时抛物线的标准方程为y2 16x 所以所求抛物线的标准方程为x2 12y或y2 16x 典例2 1 2015北京丰台二模 抛物线y2 4x的焦点为f 经过f的直线与抛物线在x轴上方的部分相交于点a 与准线l交于点b 且ak l于k 如果 af bf 那么 akf的面积是 a 4b 3c 4d 8 2 2016北京石景山一模 已知抛物线y2 4x的动弦ab的中点的横坐标为2 则 ab 的最大值为 a 4b 6c 8d 12 3 已知直线l1 4x 3y 6 0和直线l2 x 1 抛物线y2 4x上一动点p到直线l1和直线l2的距离之和的最小值是 考点二抛物线的定义及其应用 解析 1 设准线l与x轴的交点为m 则 mf p 2 因为 af bf 所以 ak 2 mf 2p 由抛物线定义知 af ak 所以 af bf 2p 在rt akb中 kb 2p 所以 kaf 60 所以 akf为等边三角形 因此三角形akf的面积为s 2p 2 p2 4 故选c 答案 1 c 2 b 3 2 2 设a x1 y1 b x2 y2 f为焦点 如图 过点a作ag 准线于g 过点b作bh 准线于h 根据抛物线的定义 得 af ag x1 1 bf bh x2 1 af bf ab x1 1 x2 1 ab x1 x2 2 ab ab中点的横坐标为2 x1 x2 4 ab 6 故 ab 的最大值为6 3 易知l2 x 1是抛物线y2 4x的准线 设抛物线的焦点为f 1 0 则动点p到l2的距离等于 pf 则动点p到直线l1和直线l2的距离之和的最小值为焦点f到直线l1 4x 3y 6 0的距离 所以最小值是 2 方法指导与抛物线有关的最值问题 一般情况下都与抛物线的定义有关 由于抛物线的定义在运用上有较大的灵活性 因此此类问题也有一定的难度 看到准线想焦点 看到焦点想准线 这是解决抛物线焦点弦有关问题的重要途径 2 1已知抛物线c y2 x的焦点为f a x0 y0 是c上一点 af x0 则x0 a 1b 2c 4d 8 答案a由y2 x得2p 1 即p 因此焦点f 准线方程为l x 设点a到准线的距离为d 由抛物线的定义可知d af 从而x0 x0 解得x0 1 故选a a 2 2已知点p是抛物线y2 2x上的一个动点 则点p到点 0 2 的距离与点p到该抛物线准线的距离之和的最小值为 a b 3c d 答案a易知抛物线y2 2x的焦点为f 由抛物线的定义知点p到焦点f的距离等于它到准线的距离 因此求点p到点 0 2 的距离与点p到抛物线的准线的距离之和的最小值 可以转化为求点p到点 0 2 的距离与点p到焦点f的距离之和的最小值 结合图形不难得出相应的最小值就等于焦点f到点 0 2 的距离 因此所求的最小值等于 选a a 2 3如图 正方形abcd和正方形defg的边长分别为a b a0 经过c f两点 则 1 解析由题意知 od de b dc a ef b 故c f 又抛物线y2 2px p 0 经过c f两点 2 1 0 又 1 1 答案1 2 由p 4 4x2 5px p2 0可简化为x2 5x 4 0 又x1 x2 从而x1 1 x2 4 y1 2 y2 4 从而a 1 2 b 4 4 设 x3 y3 1 2 4 4 4 1 4 2 又 8x3 即 2 2 1 2 8 4 1 即 2 1 2 4 1 解得 0或 2 方法指导求抛物线焦点弦的三种方法 定义法 ab x1 x2 p 倾斜角法 ab 为ab的倾斜角 斜率法 ab 2p k为ab的斜率 3 1设抛物线y2 2px p 0 的焦点为f 经过点f的直线交抛物线于a b两点 点c在抛物线的准线上 且bc x轴 证明 直线ac经过原点o 典例4已知抛物线y2 2px p 0 过点c 2 0 的直线l交抛物线于a b两点 坐标原点为o 12 1 求抛物线的方程 2 当以 ab 为直径的圆与y轴相切时 求直线l的方程 考点四直线与抛物线的位置关系 由 得 1 m2 16m2 32 4m2 4 2 解得m2 3 即m 所以直线l的方程为x y 2 0或x y 2 0 方法指导 1 直线与抛物线的位置关系和直线与椭圆 双曲线的位置关系类似 一般要用到根与系数的关系 2 有关直线与抛物线相交的弦长问题 要注意直线是否过抛物线的焦点 若过抛物线的焦点 可直接使用公式 ab xa xb p或 ab ya yb p 若不过焦点 则必须用一般弦长公式 3 涉及抛物线的弦长 中点 距离等相关问题时 一般利用根与系数的关系采用 设而不求 整体代入 等解法 提醒 涉及弦的中点 斜率时一般用 点差法 求解 4 1 2015北京朝阳二模 已知点a为抛物线c x2 4y上的动点 不含原点 过点a的切线交x轴于点b 设抛物线c的焦点为f 则 abf a 一定是直角b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论