




已阅读5页,还剩28页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第8节圆锥曲线的综合问题 最新考纲1 掌握解决直线与椭圆 抛物线的位置关系的思想方法 2 了解圆锥曲线的简单应用 3 理解数形结合的思想 1 直线与圆锥曲线的位置关系 知识梳理 1 当a 0时 设一元二次方程ax2 bx c 0的判别式为 则 0 直线与圆锥曲线c 0 直线与圆锥曲线c 0 直线与圆锥曲线c 2 当a 0 b 0时 即得到一个一次方程 则直线l与圆锥曲线c相交 且只有一个交点 此时 若c为双曲线 则直线l与双曲线的渐近线的位置关系是 若c为抛物线 则直线l与抛物线的对称轴的位置关系是 相交 相切 相离 平行 平行或重合 2 圆锥曲线的弦长 常用结论及微点提醒 1 直线与椭圆位置关系的有关结论 1 过椭圆外一点总有两条直线与椭圆相切 2 过椭圆上一点有且仅有一条直线与椭圆相切 3 过椭圆内一点的直线均与椭圆相交 2 直线与抛物线位置关系的有关结论 1 过抛物线外一点总有三条直线和抛物线有且只有一个公共点 两条切线和一条与对称轴平行或重合的直线 2 过抛物线上一点总有两条直线与抛物线有且只有一个公共点 一条切线和一条与对称轴平行或重合的直线 3 过抛物线内一点只有一条直线与抛物线有且只有一个公共点 一条与对称轴平行或重合的直线 1 思考辨析 在括号内打 或 诊断自测 解析 2 因为直线l与双曲线c的渐近线平行时 也只有一个公共点 是相交 但并不相切 3 因为直线l与抛物线c的对称轴平行或重合时 也只有一个公共点 是相交 但不相切 答案 1 2 3 4 解析直线y kx k 1 k x 1 1恒过定点 1 1 又点 1 1 在椭圆内部 故直线与椭圆相交 答案a 答案a 4 过抛物线y 2x2的焦点的直线与抛物线交于a x1 y1 b x2 y2 两点 则x1x2等于 5 已知f1 f2是椭圆16x2 25y2 1600的两个焦点 p是椭圆上一点 且pf1 pf2 则 f1pf2的面积为 解析由题意可得 pf1 pf2 2a 20 pf1 2 pf2 2 f1f2 2 4c2 144 pf1 pf2 2 2 pf1 pf2 202 2 pf1 pf2 解得 pf1 pf2 128 答案64 考点一直线与圆锥曲线的位置关系 解 1 椭圆c1的左焦点为f1 1 0 c 1 又点p 0 1 在曲线c1上 2 由题意可知 直线l的斜率显然存在且不等于0 设直线l的方程为y kx m 因为直线l与椭圆c1相切 所以 1 16k2m2 4 1 2k2 2m2 2 0 整理得2k2 m2 1 0 因为直线l与抛物线c2相切 所以 2 2km 4 2 4k2m2 0 整理得km 1 规律方法研究直线与圆锥曲线的位置关系时 一般转化为研究其直线方程与圆锥曲线方程组成的方程组解的个数 消元后 应注意讨论含x2项的系数是否为零的情况 以及判别式的应用 但对于选择题 填空题要充分利用几何条件 用数形结合的方法求解 答案b 考点二与弦有关的问题 解 1 设f1的坐标为 c 0 f2的坐标为 c 0 c 0 设直线l与椭圆d的交点坐标为 x1 y1 x2 y2 设a x1 y1 b x2 y2 则y1 y2 14 ab y1 y2 p 14 2 16 2 因为直线ab过点f 3 0 和点 1 1 答案 1 16 2 d 考点三圆锥曲线的综合问题 抛物线e的方程为x2 4y 2 证明设a x1 y1 b x2 y2 直线l的方程为y kx b 代入抛物线方程 得x2 4kx 4b 0 则x1 x2 4k x1x2 4b 则点d 2k 2k2 b 设与直线l平行且与抛物线e相切的直线方程为y kx m 代入抛物线方程 得x2 4kx 4m 0 由 16k2 16m 0 得m k2 点c的横坐标为2k 则c 2k k2 直线cd与x轴垂直 则点a b到直线cd的距离之和为 x1 x2 则16k2 16b 32 即b 2 k2 cd 2k2 b k2 2 规律方法圆锥曲线的综合问题主要包括 定点 定值问题 最值 范围问题 1 求解最值与范围问题的关键在于准确利用已知条件构造不等关系式或目标函数 通过解不等式或求解目标函数的值域解决相应问题 2 关于定点的考题多以坐标轴上的点为研
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025病句考试真题及答案
- 大学班委笔试题目及答案
- 数字音频处理培训考试题
- 京东采购笔试题库及答案
- DB50T18482025数字化共同配送分类与编码指南(标准文本)
- 2025北京社工考试真题及答案
- 安全培训微课设计课件
- 安全培训微课堂设计方案课件
- 推动思政课建设提质增效的策略及实施路径
- 2025年工厂环境保护试题及答案
- 2025贵州铜仁市招聘专业化管理的村党组织书记43人考试参考题库及答案解析
- 2025年安徽浩悦再生材料科技有限公司第一批次社会招聘笔试参考题库附答案解析
- 2025上海金山巴士公共交通有限公司招聘30人笔试备考题库及答案解析
- 情商与智商的课件
- 新能源产业信息咨询服务协议范本
- 3.3《含小括号的混合运算》(课件) -2025-2026学年三年级数学上册 西师大版
- 商业店铺施工方案
- 粮仓建筑施工管理办法
- 2025秋全体教师大会上,德育副校长讲话:德为根,安为本,心为灯,家为桥-这场开学讲话,句句都是育人的方向
- 急性肺水肿护理
- 2025-2026学年接力版(2024)小学英语四年级上册(全册)教学设计(附目录)
评论
0/150
提交评论