矩阵方程的求解问题.doc_第1页
矩阵方程的求解问题.doc_第2页
矩阵方程的求解问题.doc_第3页
矩阵方程的求解问题.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

矩阵方程的求解问题白秀琴(平顶山工业职业技术学院,基础部,河南 平顶山 467001)摘要:主要考察了矩阵方程的求解问题,给出了一般矩阵方程当系数矩阵满足不同条件时的两种求解方法。关键词:矩阵;矩阵的逆;矩阵方程矩阵是线性代数中的最重要的部分,它贯穿于线性代数的始终,可以说线性代数就是矩阵的代数,矩阵是处理高等数学很多问题的有力工具。矩阵方程是矩阵运算的一部分,这里我们主要讨论如何求解矩阵方程的问题。掌握简单的矩阵方程的求法,对于求解复杂的矩阵方程有很大帮助。 简单的矩阵方程有三种形式:如果这里的、都是可逆矩阵,则求解时需要找出矩阵的逆,注意左乘和右乘的区别。它们的解分别为:例如,求解方程先考察是否可逆,如果可逆时,方程两边同时左乘,得即这里要注意只能左乘不能右乘,因为矩阵的乘法不满足交换律。同样,对于方程只能右乘,得即而对于方程只能是左乘而右乘,得即看下面解矩阵方程例题:例1: 解:先求出,则则 例2: 解:先求出,则则例3: 解:先求出,则则 例4:解矩阵方程其中,是三阶单位方阵。解:移项,将矩阵方程化为标准形式:由于可逆,两边同时左乘,得注:如果按计算,需要先求,再求,最后相乘,计算量大且易出错。因此应先尽量化简矩阵方程,再计算求解。当矩阵方程中的、不是方阵或者是不可逆的方阵时,前面的方法就不能用了。这时,我们需要用待定元素法来求矩阵方程。设未知矩阵的元素为,即,然后由所给的矩阵方程列出所满足的线性方程组,通过解线性方程组求出所有元素,从而得到所求矩阵。例5:解矩阵方程 解:利用元素法,先确定的行数等于左边矩阵的行数的列数等于积矩阵的列数,则是的矩阵。 设,则 即,于是得方程组解得,所以,其中为任意实数。例6:解矩阵方程其中,由于,所以是不可逆矩阵,需要用元素法求解。设则,即比较第一列元素得,解得同样,比较第二、三列元素可得对应方程组,分别解得,所以可得,其中是任意实数。总之,对于矩阵方程,当系数矩阵是方阵时,先判断是否可逆。如果可逆,则可以利用左乘或右乘逆矩阵的方法求未知矩阵,如果方阵不可逆或是系数矩阵不是方阵,则需要用待定元素法通过解方程确定未知矩阵。参考文献:1赵树塬。线性代数M。北京:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论