2017-2018学年高中数学导数在研究函数中的应用4.3.1利用导数研究函数的单调性分层训练湘教版.docx_第1页
2017-2018学年高中数学导数在研究函数中的应用4.3.1利用导数研究函数的单调性分层训练湘教版.docx_第2页
2017-2018学年高中数学导数在研究函数中的应用4.3.1利用导数研究函数的单调性分层训练湘教版.docx_第3页
2017-2018学年高中数学导数在研究函数中的应用4.3.1利用导数研究函数的单调性分层训练湘教版.docx_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

43.1利用导数研究函数的单调性一、基础达标1命题甲:对任意x(a,b),有f(x)0;命题乙:f(x)在(a,b)内是单调递增的,则甲是乙的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件答案A解析f(x)x3在(1,1)内是单调递增的,但f(x)3x20(1x1),故甲是乙的充分不必要条件,选A.2函数yx2ln x的单调减区间是()A(0,1) B(0,1)(,1)C(,1) D(,)答案A解析yx2ln x的定义域为(0,),yx,令y0,即x0,解得:0x1或x0,0x1,故选A.3函数f(x)x3ax2bxc,其中a,b,c为实数,当a23b0时,f(x)是()A增函数B减函数C常函数D既不是增函数也不是减函数答案A解析求函数的导函数f(x)3x22axb,导函数对应方程f(x)0的4(a23b)0,所以f(x)0恒成立,故f(x)是增函数4下列函数中,在(0,)内为增函数的是()Aysin x Byxe2Cyx3x Dyln xx答案B解析显然ysin x在(0,)上既有增又有减,故排除A;对于函数yxe2,因e2为大于零的常数,不用求导就知yxe2在(0,)内为增函数;对于C,y3x213,故函数在,上为增函数,在上为减函数;对于D,y1 (x0)故函数在(1,)上为减函数,在(0,1)上为增函数故选B.5函数yf(x)在其定义域内可导,其图象如图所示,记yf(x)的导函数为yf(x),则不等式f(x)0的解集为_答案2,3)6函数yln(x2x2)的递减区间为_答案(,1)解析f(x),令f(x)0得x1或x2,注意到函数定义域为(,1)(2,),故递减区间为(,1)7已知函数f(x)x3ax8的单调递减区间为(5,5),求函数yf(x)的递增区间解f(x)3x2a.(5,5)是函数yf(x)的单调递减区间,则5,5是方程3x2a0的根,a75.此时f(x)3x275,令f(x)0,则3x2750,解得x5或x5,函数yf(x)的单调递增区间为(,5)和(5,)二、能力提升8如果函数f(x)的图象如图,那么导函数yf(x)的图象可能是()答案A解析由f(x)与f(x)关系可选A.9设f(x),g(x)在a,b上可导,且f(x)g(x),则当axb时,有()Af(x)g(x)Bf(x)g(x)Cf(x)g(a)g(x)f(a)Df(x)g(b)g(x)f(b)答案C解析f(x)g(x)0,(f(x)g(x)0,f(x)g(x)在a,b上是增函数,当axb时f(x)g(x)f(a)g(a),f(x)g(a)g(x)f(a)10(2013大纲版)若函数f(x)x2ax在是增函数,则a的取值范围是_答案3,)解析因为f(x)x2ax在上是增函数,故f(x)2xa0在上恒成立,即a2x在上恒成立令h(x)2x,则h(x)2,当x时,h(x)0,则h(x)为减函数,所以h(x)h3,所以a3.11求下列函数的单调区间:(1)yxln x;(2)yln(2x3)x2.解(1)函数的定义域为(0,),y1,由y0,得x1;由y0,得0x1.函数yxln x的单调增区间为(1,),单调减区间为(0,1)(2)函数yln(2x3)x2的定义域为.yln(2x3)x2,y2x.当y0,即x1或x时,函数yln(2x3)x2单调递增;当y0,即1x时,函数yln(2x3)x2单调递减故函数yln(2x3)x2的单调递增区间为,单调递减区间为.12已知函数f(x)x3bx2cxd的图象经过点P(0,2),且在点M(1,f(1)处的切线方程为6xy70.(1)求函数yf(x)的解析式;(2)求函数yf(x)的单调区间解(1)由yf(x)的图象经过点P(0,2),知d2,f(x)x3bx2cx2,f(x)3x22bxc.由在点M(1,f(1)处的切线方程为6xy70,知6f(1)70,即f(1)1,f(1)6.即解得bc3.故所求的解析式是f(x)x33x23x2.(2)f(x)3x26x3.令f(x)0,得x1或x1;令f(x)0,得1x1.故f(x)x33x23x2的单调递增区间为(,1)和(1,),单调递减区间为(1,1)三、探究与创新13已知函数f(x)mx3nx2(m、nR,m0),函数yf(x)的图象在点(2,f(2)处的切线与x轴平行(1)用关于m的代数式表示n;(2)求函数f(x)的单调增区间解(1)由已知条件得f(x)3mx22nx,又f(2)0,3mn0,故n3m.(2)n3m,f(x)mx33mx2,f(x)3mx26mx.令f(x)0,即3mx26mx0,当m0时,解得x0或x2,则函数f(x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论