高考数学大一轮复习 第十章 算法初步、统计、统计案例 第55讲 用样本估计总体优选课件.ppt_第1页
高考数学大一轮复习 第十章 算法初步、统计、统计案例 第55讲 用样本估计总体优选课件.ppt_第2页
高考数学大一轮复习 第十章 算法初步、统计、统计案例 第55讲 用样本估计总体优选课件.ppt_第3页
高考数学大一轮复习 第十章 算法初步、统计、统计案例 第55讲 用样本估计总体优选课件.ppt_第4页
高考数学大一轮复习 第十章 算法初步、统计、统计案例 第55讲 用样本估计总体优选课件.ppt_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

算法初步 统计 统计案例 第十章 第55讲用样本估计总体 栏目导航 1 频率分布直方图和茎叶图 1 作频率分布直方图的步骤 求极差 即一组数据中 与 的差 决定 与 将数据 列 画 最大值 最小值 组距 组数 分组 频率分布表 频率分布直方图 2 频率分布折线图和总体密度曲线 频率分布折线图 连接频率分布直方图中各小长方形上端的 就得到频率分布折线图 总体密度曲线 随着样本容量的增加 作图时 增加 减小 相应的频率折线图会越来越接近于一条光滑曲线 统计中称这条光滑曲线为总体密度曲线 3 茎叶图的优点茎叶图的优点是可以 原始数据 而且可以 记录 这对数据的记录和表示都能带来方便 中点 所分的组数 组距 保留 随时 2 样本的数字特征 1 众数 中位数 平均数 最多 从小到大的 中间 2 标准差 方差 标准差 样本数据到平均数的一种平均距离 一般用s表示 s 方差 标准差的平方s2 样本数据 样本容量 样本平均数 1 思维辨析 在括号内打 或 1 在频率分布直方图中 小矩形的高表示频率 2 茎叶图一般左侧的叶按从大到小的顺序写 右侧的叶按从小到大的顺序写 相同的数据可以只记一次 3 在频率分布直方图中 最高的小长方形底边中点的横坐标是众数 4 在频率分布直方图中 众数左边和右边的小长方形的面积和是相等的 5 一组数据的方差越大 说明这组数据的波动越大 解析 1 错误 在频率分布直方图中 小矩形的高为频率 组距 2 错误 茎叶图中 相同的数据要重复记 故错误 3 正确 由众数概念知结论正确 4 错误 在频率分布直方图中 中位数左边和右边的小长方形面积和相等 故错误 5 正确 由方差定义知结论正确 2 若某校高一年级8个班参加合唱比赛的得分如茎叶图所示 则这组数据的中位数和平均数分别是 a 91 5和91 5b 91 5和92c 91和91 5d 92和92 a 3 如图是100位居民月均用水量的频率分布直方图 则月均用水量为 2 2 5 范围内的居民数有 人 解析由图可知 在 2 2 5 范围内的居民人数有100 0 5 2 5 2 25 25 4 一个容量为200的样本的频率分布直方图如图所示 则样本数据落在 5 9 内的频率和频数分别为 解析由图可知 落在 5 9 内的频率为0 05 9 5 0 2 频数为200 0 2 40 0 2 40 5 某赛季甲 乙两名篮球运动员每场比赛得分记录用茎叶图表示 从茎叶图的分布情况看 运动员的发挥更稳定 解析由茎叶图可知 乙运动员的得分大部分集中在30 40之间 而甲运动员的得分相对比较分散且在低分区的较多 故乙比赛得分更稳定 乙 1 已知频率分布直方图中的部分数据 求其他数据 可根据频率分布直方图中的数据求出样本与整体的关系 利用频率和等于1就可求出其他数据 2 已知频率分布直方图 求某种范围内的数据 可利用图形及已知范围结合求解 一频率分布直方图及其应用 例1 2018 河北衡水一中测试 某市为了制定合理的节电方案 对居民用电情况进行了调查 通过抽样 获得了某年200户居民每户的月均用电量 单位 百千瓦 时 将数据按 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 分成9组 制成了如图所示的频率分布直方图 1 求直方图中m的值 2 设该市有100万户居民 估计全市每户居民中月均用电量不低于6百千瓦 时的户数及每户居民月均用电量的中位数 3 政府计划对月均用电量在4百千瓦 时以下的用户进行奖励 月均用电量在 0 1 内的用户奖励20元 月 月均用电量在 1 2 内的用户奖励10元 月 月均用电量在 2 4 内的用户奖励2元 月 若该市共有400万户居民 试估计政府执行此计划的年度预算 3 该市月均用电量在 0 1 1 2 2 4 内的用户数分别为20000 8 20000 16 20000 72 所以每月预算为20000 8 20 16 10 72 2 20000 464 元 故估计政府执行此计划的年度预算为20000 464 12 11136 万元 二茎叶图及其应用 由茎叶图可以清晰地看到数据的分布情况 这一点同频率分布直方图类似 它优于频率分布直方图的第一点是从茎叶图中能看到原始数据 没有任何信息损失 第二点是茎叶图便于记录和表示 其缺点是当样本容量较大时 作图较繁琐 例2 某市为了考核甲 乙两部门的工作情况 随机访问了50位市民 根据这50位市民对这两部门的评分 评分越高表明市民的评价越高 绘制茎叶图如下 1 分别估计该市的市民对甲 乙两部门评分的中位数 2 分别估计该市的市民对甲 乙两部门的评分高于90的概率 3 根据茎叶图分析该市的市民对甲 乙两部门的评价 三样本的数字特征及其应用 平均数和方差都是重要的数字特征 是对总体的一种简明的阐述 平均数 中位数 众数描述总体的集中趋势 方差和标准差描述波动大小 例3 甲 乙两名战士在相同条件下各射靶10次 每次命中的环数分别是甲 8 6 7 8 6 5 9 10 4 7 乙 6 7 7 8 6 7 8 7 9 5 1 分别计算两组数据的平均数 2 分别计算两组数据的方差 3 根据计算结果 估计一下两名战士的射击水平谁更好一些 1 以下茎叶图记录了甲 乙两组各五名学生在一次英语听力测试中的成绩 单位 分 已知甲组数据的中位数为15 乙组数据的平均数为16 8 则x y的值分别为 a 2 5b 5 5c 5 8d 8 8 c 2 某电子商务公司对10000名网络购物者2017年度的消费情况进行统计 发现消费金额 单位 万元 都在区间 0 3 0 9 其频率分布直方图如图所示 1 直方图中的a 2 在这些购物者中 消费金额在区间 0 5 0 9 内的购物者的人数为 3 6000 解析由频率分布直方图及频率和等于1可得 0 2 0 8 1 5 2 2 5 a 0 1 1 解得a 3 于是消费金额在区间 0 5 0 9 内的频率为 3 2 0 8 0 2 0 1 0 6 所以消费金额在区间 0 5 0 9 内的购物者的人数为0 6 10000 6000 故应填3 6000 b 2 由正整数组成的一组数据x1 x2 x3 x4 其平均数和中位数都是2 且标准差等于1 则这组数据为 从小到大排列 1 1 3 3 4 2017 北京卷 某大学艺术专业400名学生参加某次测评 根据男女学生人数比例 使用分层抽样的方法从中随机抽取了100名学生 记录他们的分数 将数据分成7组 20 30 30 40 80 90 并整理得到如下频率分布直方图 1 从总体的400名学生中随机抽取一人 估计其分数小于70的概率 2 已知样本中分数小于40的学生有5人 试估计总体中分数在区间 40 50 内的人数 3 已知样本中有一半男生的分数不小于70 且样本中分数不小于70的男女生人数相等 试估计总体中男生和女生人数的比例 解析 1 根据频率分布直方图可知 样本中分数不小于70的频率为 0 02 0 04 10 0 6 所以样本中分数小于70的概率为1 0 6 0 4 所以从总体的400名学生中随机抽取一人 其分数小于70的概率估计为0 4 错因分析 不会计算中位数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论