江苏省连云港、徐州、宿迁三市高三数学下学期第三次模拟试卷(含解析).doc_第1页
江苏省连云港、徐州、宿迁三市高三数学下学期第三次模拟试卷(含解析).doc_第2页
江苏省连云港、徐州、宿迁三市高三数学下学期第三次模拟试卷(含解析).doc_第3页
江苏省连云港、徐州、宿迁三市高三数学下学期第三次模拟试卷(含解析).doc_第4页
江苏省连云港、徐州、宿迁三市高三数学下学期第三次模拟试卷(含解析).doc_第5页
免费预览已结束,剩余21页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2015年江苏省连云港、徐州、宿迁三市高考数学三模试卷 一、填空题:本大题共14小题,每小题5分,计70分。不需写出解答过程。请把答案写在答题卡的指定位置上。1已知复数z=i(3+4i)(i为虚数单位),则z的模为2已知集合a=1,3,b=2,4,则ab=3如图是某市2014年11月份30天的空气污染指数的频率分布直方图根据国家标准,污染指数在区间0,51)内,空气质量为优;在区间51,101)内,空气质量为良;在区间101,151)内,空气质量为轻微污染;,由此可知该市11月份空气质量为优或良的天数有天4执行如图所示的程序框图,则输出k的值是5已知集合a=0,1,b=2,3,4,若从a,b中各取一个数,则这两个数之和不小于4的概率为6设等差数列an的前n项和为sn,a3+a5=26,s4=28,则a10的值为7设函数f(x)=,则f(f(1)的值为8已知双曲线c的离心率为2,它的一个焦点是抛物线x2=8y的焦点,则双曲线c的标准方程为9f(x)=sin(x+)(02),若f()=1,则函数f(x)的最小正周期为10在三棱柱abca1b1c1中,侧棱aa1平面ab1c1,aa1=1,底面abc是边长为2的正三角形,则此三棱柱的体积为11如图,半径为2的扇形的圆心角为120,m,n分别为半径op,oq的中点,a为上任意一点,则的取值范围是12在平面直角坐标系xoy中,已知圆c:(xa)2+(ya+2)2=1,点a(0,2),若圆c上存在点m,满足ma2+mo2=10,则实数a的取值范围是13已知实数x,y满足条件,若不等式m(x2+y2)(x+y)2恒成立,则实数m的最大值是14函数f(x)=axx2(a1)有三个不同的零点,则实数a的取值范围是二、解答题:本大题共6小题,计90分。解答应写出必要的文字说明、证明过程或演算步骤,请把答案写在答题卡的指定区域内。15在abc在,角a,b,c的对边分别为a,b,c,已知cosc=,sina=cosb(1)求tanb的值;(2)若c=,求abc的面积16如图,矩形abcd所在平面与三角形ecd所在平面相交于cd,ae平面ecd(1)求证:ab平面ade;(2)若点m在线段ae上,am=2me,n为线段cd中点,求证:en平面bdm17如图,在p地正西方向8km的a处和正东方向1km的b处各有一条正北方向的公路ac和bd,现计划在ac和bd路边各修建一个物流中心e和f,为缓解交通压力,决定修建两条互相垂直的公路pe和pf,设epa=(0)(1)为减少对周边区域的影响,试确定e,f的位置,使pae与pfb的面积之和最小;(2)为节省建设成本,试确定e,f的位置,使pe+pf的值最小18如图,已知椭圆m:=1(ab0),其离心率为,两条准线之间的距离为b,c分别为椭圆m的上、下顶点,过点t(t,2)(t0)的直线tb,tc分别与椭圆m交于e,f两点(1)求椭圆m的标准方程;(2)若tbc的面积是tef的面积的k倍,求k的最大值19设正项数列an的前n项和为sn,且sn=+an,nn*正项等比数列bn满足:b2=a2,b4=a6(1)求数列an,bn的通项公式;(2)设cn=,数列cn的前n项和为tn,求所有正整数m的值,使得恰好为数列cn中的项20已知函数f(x)=x3+ax2x+b,其中a,b为常数(1)当a=1时,若函数f(x)在0,1上的最小值为,求b的值;(2)讨论函数f(x)在区间(a,+)上的单调性;(3)若曲线y=f(x)上存在一点p,使得曲线在点p处的切线与经过点p的另一条切线互相垂直,求a的取值范围选修4-1:几何证明选讲21如图,已知直线ab为圆o的切线,切点为b,点c在圆上,abc的角平分线be交圆于点e,db垂直be交圆于点d证明:db=dc(选修4-2:矩阵与交换)22已知矩阵a的逆矩阵a1=求曲线xy=1在矩阵a所对应的变换作用下所得的曲线方程(选修4-4:坐标系与参数方程)23已知曲线c1的参数方程为(为参数)在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线c2的极坐标方程为cos(+)=2求c1与c2交点的极坐标,其中0,02(选修4-5:不等式选讲)24已知a,b,c都是正数,求证:abc必做题每小题10分,计20分。请把答案写在答题卡的指定区域内。25如图,在菱形abcd中,ab=2,bad=60,沿对角线bd将abd折起,使a,c之间的距离为,若p,q分别为线段bd,ca上的动点(1)求线段pq长度的最小值;(2)当线段pq长度最小时,求直线pq与平面acd所成角的正弦值26设a,b,nn*,且ab,对于二项式(1)当n=3,4时,分别将该二项式表示为(p,qn*)的形式;(2)求证:存在p,qn*,使得等式=与(ab)n=pq同时成立2015年江苏省连云港、徐州、宿迁三市高考数学三模试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,计70分。不需写出解答过程。请把答案写在答题卡的指定位置上。1已知复数z=i(3+4i)(i为虚数单位),则z的模为5考点: 复数求模;复数代数形式的乘除运算专题: 数系的扩充和复数分析: 利用复数的运算法则、模的计算公式即可得出解答: 解:复数z=i(3+4i)=3i4|z|=5故答案为:5点评: 本题考查了复数的运算法则、模的计算公式,属于基础题2已知集合a=1,3,b=2,4,则ab=2考点: 交集及其运算专题: 集合分析: 根据交集的运算定义计算即可解答: 解:集合a=1,3,b=2,4,ab=2;故答案为:2点评: 本题考查了交集的运算,属于基础题3如图是某市2014年11月份30天的空气污染指数的频率分布直方图根据国家标准,污染指数在区间0,51)内,空气质量为优;在区间51,101)内,空气质量为良;在区间101,151)内,空气质量为轻微污染;,由此可知该市11月份空气质量为优或良的天数有28天考点: 频率分布直方图专题: 概率与统计分析: 根据频率和为1,利用频率=,求出对应的频率与频数即可解答: 解:根据频率分布直方图,得;该市11月份空气污染指数在100内的频率为110=,该市11份空气质量为优或良的天数有:30=28故答案为:28点评: 本题考查了频率分布直方图的应用问题,也考查了频率、频数与样本容量的应用问题,是基础题目4执行如图所示的程序框图,则输出k的值是4考点: 程序框图专题: 图表型;算法和程序框图分析: 模拟执行程序框图,依次写出每次循环得到的s,k的值,当s=12时不满足条件s12,退出循环,输出k的值为4解答: 解:模拟执行程序框图,可得k=1,s=0满足条件s12,s=2,k=2满足条件s12,s=6,k=3满足条件s12,s=12,k=4不满足条件s12,退出循环,输出k的值为4故答案为:4点评: 本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的s,k的值是解题的关键,属于基础题5已知集合a=0,1,b=2,3,4,若从a,b中各取一个数,则这两个数之和不小于4的概率为考点: 古典概型及其概率计算公式专题: 概率与统计分析: 集合合a=0,1,b=2,3,4,从a,b中各取任意一个数,取法总数为6,这两个数之和不小于4的情况有2种,由此能求出两个数之和不小于4的概率解答: 解:集合a=0,1,b=2,3,4,从a,b中各取任意一个数,取法总数为:23=6,这两个数之和不小于4的情况有,0+4,1+3,1+4共3种,这两个数之和不小于4的概率p=,故答案为:点评: 本题考查概率的求法,是基础题,解题时要注意古典概型概率计算公式的合理运用6设等差数列an的前n项和为sn,a3+a5=26,s4=28,则a10的值为37考点: 等差数列的前n项和专题: 等差数列与等比数列分析: 设出等差数列的首项和公差,由已知列式求得首项和公差,再由等差数列的通项公式求得a10的值解答: 解:设等差数列an的首项为a1,公差为d,由a3+a5=26,s4=28,得:,解得:a10 =a1+9d=1+36=37故答案为:37点评: 本题考查了等差数列的通项公式,考查了等差数列的前n项和,是基础题7设函数f(x)=,则f(f(1)的值为2考点: 分段函数的应用;函数的值专题: 函数的性质及应用分析: 直接利用分段函数化简求解即可解答: 解:函数f(x)=,则f(1)=,f(f(1)=f()=log2=2故答案为:2点评: 本题考查分段函数的应用,函数值的求法,考查计算能力8已知双曲线c的离心率为2,它的一个焦点是抛物线x2=8y的焦点,则双曲线c的标准方程为y2考点: 抛物线的简单性质;双曲线的简单性质专题: 圆锥曲线的定义、性质与方程分析: 利用抛物线的焦点坐标得到双曲线的焦距,然后利用离心率求出a,b,即可求解双曲线方程解答: 解:抛物线x2=8y的焦点为(0,2),双曲线c的一个焦点是抛物线x2=8y的焦点,所以c=2,双曲线c的离心率为2,所以a=1,则b=,所求双曲线方程为:y2故答案为:y2点评: 本题考查圆锥曲线方程的综合应用,考查计算能力9f(x)=sin(x+)(02),若f()=1,则函数f(x)的最小正周期为4考点: 三角函数的周期性及其求法专题: 函数的性质及应用分析: 由条件求得=,f(x)=sin(x+),再根据函数y=asin(x+)的周期为 ,得出结论解答: 解:由于f(x)=sin(x+)(02),f()=sin(+)=1,+=2k+ kz,即=3k+,=,f(x)=sin(x+),故函数f(x)的最小正周期为 =4,故答案为:4点评: 本题主要考查根据三角函数的值求角,函数y=asin(x+)的周期性,利用了函数y=asin(x+)的周期为 ,属于基础题10在三棱柱abca1b1c1中,侧棱aa1平面ab1c1,aa1=1,底面abc是边长为2的正三角形,则此三棱柱的体积为考点: 棱柱、棱锥、棱台的体积专题: 空间位置关系与距离分析: 由等积法证明,然后利用棱锥的体积公式求得答案解答: 解:如图,连接b1c,则,又,aa1平面ab1c1,aa1=1,底面abc是边长为2的正三角形,点评: 本题主要考查直线与直线、直线与平面、平面与平面的位置关系及体积等基础知识;考查学生的空间想象能力、推理论证能力及运算求解能力,是中档题11如图,半径为2的扇形的圆心角为120,m,n分别为半径op,oq的中点,a为上任意一点,则的取值范围是,考点: 平面向量数量积的运算专题: 平面向量及应用分析: 由题意,设aom=,将所求用向量表示,利用向量的数量积公式表示为的代数式,利用正弦函数的有界性求范围解答: 解:由题意,设aom=,则=()()=+42cos2cos(120)=cossin=2sin(+30),因为0,120,所以(+30)30,150,所以sin(+30),所以的取值范围是,;故答案为:,点评: 本题考查了向量的数量积运算以及三角函数的恒等变形求范围;关键是将所求用向量的夹角表示,借助于三角函数的有界性求范围12在平面直角坐标系xoy中,已知圆c:(xa)2+(ya+2)2=1,点a(0,2),若圆c上存在点m,满足ma2+mo2=10,则实数a的取值范围是0a3考点: 点与圆的位置关系;两点间的距离公式专题: 计算题;直线与圆分析: 设m(x,y),利用ma2+mo2=10,可得m的轨迹方程,利用圆c上存在点m,满足ma2+mo2=10,可得两圆相交或相切,建立不等式,即可求出实数a的取值范围解答: 解:设m(x,y),ma2+mo2=10,x2+(y2)2+x2+y2=10,x2+(y1)2=4,圆c上存在点m,满足ma2+mo2=10,两圆相交或相切,13,0a3故答案为:0a3点评: 本题考查轨迹方程,考查圆与圆的位置关系,确定m的轨迹方程是关键13已知实数x,y满足条件,若不等式m(x2+y2)(x+y)2恒成立,则实数m的最大值是考点: 简单线性规划专题: 不等式的解法及应用分析: 利用分式不等式的性质将不等式进行分类,结合线性规划以及恒成立问题利用数形结合进行求解即可解答: 解:由题意知:可行域如图,又m(x2+y2)(x+y)2在可行域内恒成立且m=1+=1+=1+,故只求z=的最大值即可设k=,则有图象知a(2,3),则oa的斜率k=,bc的斜率k=1,由图象可知即1k,z=k+在1k,上为增函数,当k=时,z取得最大值z=+=,此时1+=1+=1+=,故m,故m的最大值为,故答案为:点评: 本题主要考查线性规划、基本不等式、还有函数知识考查的综合类题目在解答过程当中,同学们应该仔细体会数形结合的思想、函数思想、转化思想还有恒成立思想在题目中的体现14函数f(x)=axx2(a1)有三个不同的零点,则实数a的取值范围是1a考点: 函数的零点与方程根的关系专题: 综合题;导数的综合应用分析: x0时,必有一个交点,x0时,由axx2=0,可得lna=,构造函数,确定函数的单调性,求出1a时有两个交点,即可得出结论解答: 解:x0时,由axx2=0,可得ax=x2,xlna=2lnx,lna=,令h(x)=,则h(x)=0,可得x=e,函数在(0,e)上单调增,在(e,+)上单调减,h(x)max=h(e)=,lna,1a时有两个交点;又x0时,必有一个交点,1a时,函数f(x)=axx2(a1)有三个不同的零点,故答案为:1a点评: 本题考查函数的零点,考查函数的单调性,考查学生分析解决问题的能力,属于中档题二、解答题:本大题共6小题,计90分。解答应写出必要的文字说明、证明过程或演算步骤,请把答案写在答题卡的指定区域内。15在abc在,角a,b,c的对边分别为a,b,c,已知cosc=,sina=cosb(1)求tanb的值;(2)若c=,求abc的面积考点: 正弦定理专题: 解三角形分析: (1)由cosc=,c(0,),可得sinc=,由a+b+c=,可得sina=sin(b+c)=sinbcosc+cosbsinc=,又sina=cosb即可得出tanb(2)由(1)知tanb=,可得sinb,cosb利用正弦定理得,又sina=cosb,利用s=bcsina即可得出解答: 解:(1)cosc=,c(0,),sinc=,a+b+c=,sina=sin(b+c)=sinbcosc+cosbsinc=,又sina=cosbcosb=,tanb=(2)由(1)知tanb=,cosb=由正弦定理得,=,又sina=cosb=,s=bcsina=点评: 本题考查了正弦定理、两角和差的正弦函数、同角三角函数基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题16如图,矩形abcd所在平面与三角形ecd所在平面相交于cd,ae平面ecd(1)求证:ab平面ade;(2)若点m在线段ae上,am=2me,n为线段cd中点,求证:en平面bdm考点: 直线与平面平行的判定;直线与平面垂直的判定专题: 空间位置关系与距离分析: (1)证明abae,abad,利用直线与平面垂直的判定定理证明ab平面ade(2)连an交bd于f点,连接fm,证明enfm,利用直线与平面平行的判定定理证明en平面bdm解答: 证明:(1)ae平面ecd,cd平面ecdaecd 又abcd,abae(2分)在矩形abcd中,abad,(4分)adae=a,ad,ae平面ade,ab平面ade(6分)(2)连an交bd于f点,连接fm,(8分)abcd且ab=2dn,af=2fn,(10分)又am=2meenfm,(12分)又en平面bdm,fm平面bdmen平面bdm(14分)点评: 本题考查直线与平面平行的判定定理以及直线与平面垂直的判定定理的应用,考查逻辑推理能力17如图,在p地正西方向8km的a处和正东方向1km的b处各有一条正北方向的公路ac和bd,现计划在ac和bd路边各修建一个物流中心e和f,为缓解交通压力,决定修建两条互相垂直的公路pe和pf,设epa=(0)(1)为减少对周边区域的影响,试确定e,f的位置,使pae与pfb的面积之和最小;(2)为节省建设成本,试确定e,f的位置,使pe+pf的值最小考点: 三角形中的几何计算专题: 解三角形分析: (1)借助三角函数求出pae与pfb的面积,利用基本不等式性质,求出e,f的位置;(2)借助三角函数求出pe+pf,利用导数求出当ae为4km,且bf为2km时,pe+pf的值最小解答: (1)在rtpae中,由题意可知ape=,ap=8,则ae=8tan所以sape=paae=32tan(2分)同理在rtpbf中,pfb=,pb=1,则bf=所以spbf=pbbf=(4分)故pae与pfb的面积之和为32tan+ (5分)32tan+2=8当且仅当32tan=,即tan=时取等号,故当ae=1km,bf=8km时,pae与pfb的面积之和最小(6分)(2)在rtpae中,由题意可知ape=,则pe=同理在rtpbf中,pfb=,则pf=令f()=pe+pf=+,0(8分)则f()=(10分) f()=0得tan=所以tan=,f()取得最小值,(12分)此时ae=aptan=8=4,bf=当ae为4km,且bf为2km时,pe+pf的值最小(14分)点评: 本题考查了学生解三角形的能力,基本不等式的性质和导数的应用,本题对学生的综合应用知识的能力有较高的要求18如图,已知椭圆m:=1(ab0),其离心率为,两条准线之间的距离为b,c分别为椭圆m的上、下顶点,过点t(t,2)(t0)的直线tb,tc分别与椭圆m交于e,f两点(1)求椭圆m的标准方程;(2)若tbc的面积是tef的面积的k倍,求k的最大值考点: 椭圆的简单性质专题: 直线与圆;圆锥曲线的定义、性质与方程分析: (1)由椭圆的离心率公式和准线方程,结合椭圆的a,b,c的关系,计算即可得到;(2)分别求出直线pb,tc的方程,代入椭圆方程,求得交点e,f的横坐标,再由三角形的面积公式,结合二次函数,计算即可得到最大值解答: 解:(1)由题意得e=,=,解得a=2,c=,b=1,则椭圆方程为+y2=1;(2)由b(0,1),c(0,1),t(t,2),则直线tb:y=x+1,代入椭圆方程可得,(1+)x2+x=0,解得xe=,直线tc:y=x1,代入椭圆方程可得xf=,k=,令t2+12=m12,则k=1+,当且仅当m=24,即t=2时,取得“=”,所以k的最大值为点评: 本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程和椭圆方程,求得交点,同时考查三角形的面积公式的运用,考查运算能力,属于中档题19设正项数列an的前n项和为sn,且sn=+an,nn*正项等比数列bn满足:b2=a2,b4=a6(1)求数列an,bn的通项公式;(2)设cn=,数列cn的前n项和为tn,求所有正整数m的值,使得恰好为数列cn中的项考点: 数列的求和专题: 等差数列与等比数列分析: (1)利用递推式、等差数列与等比数列的通项公式即可得出;(2)由题意得cn=,可得t2m=(a1+a3+a2m1)+(b2+b4+b2m)=3m+m21t2m1=t2mb2m=3m1+m21,可得3,故若使得恰好为数列cn中的项,只能为c1,c2,c3分类讨论即可得出解答: 解:(1)an0,当n=1时,a1=+,解得a1=1由sn=+an,当n2,sn1=,两式相减,得=0又an0,an+an10,anan1=1,数列an是等差数列,首项为1,公差为1,an=1+(n1)=n由b2=a2,b4=a6q2=3,q0q=,bn=(2)由题意得cn=,t2m=(a1+a3+a2m1)+(b2+b4+b2m)=+=3m+m21t2m1=t2mb2m=3m+m2123m1=3m1+m21,=33,故若使得恰好为数列cn中的项,只能为c1,c2,c3(i)若3=1,则3m1=0,m无解(ii)若3=2,可得3m1+1m2=0,显然m=1不符合题意,m=2符合题意当m3时,即f(m)=3m1+1m2,则f(m)=3m1ln32m,设g(m)=3m1ln32m,则g(m)=3m1(ln3)220,即f(m)为增函数,故f(m)f(3)0,即f(m)为增函数,故f(m)f(3)=10,故当m3时,方程3m1+1m2=0无解,即m=2是方程唯一解(iii)若3=3,则m2=1,即m=1综上所述:m=1或m=2点评: 本题考查了递推式、等差数列与等比数列的通项公式及其前n项和公式、数列的单调性,考查了分类讨论思想方法、推理能力与计算能力,属于中档题20已知函数f(x)=x3+ax2x+b,其中a,b为常数(1)当a=1时,若函数f(x)在0,1上的最小值为,求b的值;(2)讨论函数f(x)在区间(a,+)上的单调性;(3)若曲线y=f(x)上存在一点p,使得曲线在点p处的切线与经过点p的另一条切线互相垂直,求a的取值范围考点: 利用导数研究函数的单调性;利用导数研究曲线上某点切线方程专题: 导数的综合应用分析: (1)当a=1时,求出函数的导数,利用函数f(x)在0,1上单调递减,推出b的关系式,求解b即可(2)利用导函数的图象是开口向上的抛物线,对称轴为x=a,求出极值点两个不等实根x1,2=,当方程f(x)=0在区间(a,+)上无实根时,当方程f(x)=0在区间(,a与(a,+)上各有一个实根时,当方程f(x)=0在区间(a,+)上有两个实根时,分别求解a的范围即可(3)设p(x1,f(x1),则p点处的切线斜率m1=x12+2ax11,推出q点处的切线方程,化简,得x1+2x2=3a,通过两条切线相互垂直,得到(4x22+8ax2+3a21)(x22+2ax21)=1求解x22+2ax21(a2+1),然后推出a的范围即可解答: 解:(1)当a=1时,f(x)=x22x1,所以函数f(x)在0,1上单调递减,(2分)由f (1)=,即11+b=,解得b=2(4分)(2)f(x)=x2+2ax1的图象是开口向上的抛物线,其对称轴为x=a,因为=4a2+40,f(x)=0有两个不等实根x1,2=,(5分)当方程f(x)=0在区间(a,+)上无实根时,有解得 (6分)当方程f(x)=0在区间(,a与(a,+)上各有一个实根时,有:f(a)0,或,解得 (8分)当方程f(x)=0在区间(a,+)上有两个实根时,有,解得综上:当时,f(x)在区间(a,+)上是单调增函数;当时,f(x)在区间(a,)上是单调减函数,在区间(,+)上是单调增函数当时,f(x)在区间(a,),(,+)上是单调增函数,在区间(,)上是单调减函数(10)(3)设p(x1,f(x1),则p点处的切线斜率m1=x12+2ax11,又设过p点的切线与曲线y=f(x)相切于点q(x2,f(x2),x1x2,则q点处的切线方程为yf(x2)=( x22+2ax21)(xx2),所以f(x1)f(x2)=( x22+2ax21)(x1x2),化简,得x1+2x2=3a (12分)因为两条切线相互垂直,所以(x12+2ax11)(x22+2ax21)=1,即(4x22+8ax2+3a21)(x22+2ax21)=1令t=x22+2ax21(a2+1),则关于t的方程t(4t+3a2+3)=1在t(a2+1),0)上有解,(14分)所以3a2+3=4t4(当且仅当t=时取等号),解得a2,故a的取值范围是 (16分)点评: 本题考查函数的导数的综合应用,函数的单调性以及函数的极值,函数的零点的应用,考查转化思想以及计算能力选修4-1:几何证明选讲21如图,已知直线ab为圆o的切线,切点为b,点c在圆上,abc的角平分线be交圆于点e,db垂直be交圆于点d证明:db=dc考点: 与圆有关的比例线段;弦切角专题: 推理和证明分析: 连接de,交bc于点g通过弦切角定理,得abe=bce,然后利用勾股定理可得db=dc解答: 证明:如图,连接de,交bc于点g由弦切角定理,得abe=bce (4分)而abe=cbe,故cbe=bce,所以be=ce (6分)又因为dbbe,所以de为圆的直径,所以dce=90,由勾股定理可得db=dc (10分)点评: 本题考查直线与圆的位置关系,圆的切线的应用,勾股定理的应用,考查推理能力(选修4-2:矩阵与交换)22已知矩阵a的逆矩阵a1=求曲线xy=1在矩阵a所对应的变换作用下所得的曲线方程考点: 逆变换与逆矩阵专题: 矩阵和变换分析: 根据矩阵变换的特点代入计算即可解答: 解:设xy=1上任意一点(x,y)在矩阵a所对应的变换作用下对应的点(x,y),则=a1=,由此得,代入方程xy=1,得y2x2=2所以xy=1在矩阵a所对应的线性变换作用下的曲线方程为y2x2=2点评: 本题考查矩阵的变换等知识,注意解题方法的积累,属于基础题(选修4-4:坐标系与参数方程)23已知曲线c1的参数方程为(为参数)在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线c2的极坐标方程为cos(+)=2求c1与c2交点的极坐标,其中0,02考点: 简单曲线的极坐标方程;参数方程化成普通方程专题: 坐标系和参数方程分析: 运用同角的平方关系,可得c1的普通方程,由x=cos,y=sin,可得曲线c2的直角坐标方程,联立方程组,可得交点,再由直角坐标和极坐标的关系,即可得到所求点的极坐标解答: 解:将消去参数,得(x2)2+y2=4,所以c1的普通方程为:x2+y24x=0 由cos(+)=2,即为(cossin)=2,则曲线c2的极坐标方程化为直角坐标方程得:xy4=0 由,解得或,所以c1与c2交点的极坐标分别为(4,0)或(2,)点评: 本题考查参数方程,极坐标方程和普通方程的互化,同时考查曲线交点的求法,考查运算能力,属于基础题(选修4-5:不等式选讲)24已知a,b,c都是正数,求证:abc考点: 不等式的证明专题: 证明题;不等式的解法及应用分析: 利用基本不等式,再相加,即可证得结论解答: 证明:a,b,c都是正数,a2b2+b2c22ab2c,a2b2+c2a22a2bc,c2a2+b2c22abc22(a2b2+b2c2+c2a2)2ab2c+2a2bc+2abc2a2b2+b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论