广西桂林市第十二中学九年级数学上册 第9课时 一元二次方程的根与系数的关系导学案(1)(无答案) 新人教版.doc_第1页
广西桂林市第十二中学九年级数学上册 第9课时 一元二次方程的根与系数的关系导学案(1)(无答案) 新人教版.doc_第2页
广西桂林市第十二中学九年级数学上册 第9课时 一元二次方程的根与系数的关系导学案(1)(无答案) 新人教版.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第9课时 一元二次方程的根与系数的关系(1)学 习目 标1、掌握一元二次方程根与系数的关系,会运用关系定理求已知一元二次方程的两根之和及两根之积,并会解一些简单的问题。2、经历一元二次方程根与系数关系的探究过程,培养学生的观察思考、归纳概括能力,在运用关系解决问题的过程中,培养学生解决问题能力,渗透整体的数学思想,求简思想。学习重点一元二次方程的根与系数的关系及运用。学习难点定理的发现及运用。教 学 互 动 设 计设计意图一、自主学习 感受新知【问题】解下列方程,将得到的解填入下面的表格中,观察表中x1+x2,x1x2的值,它们与前面的一元二次方程的各项系数之间有什么关系?从中你能发现什么规律?一元二次方程x1x2x1+x2x1x2 +6x-16=0-2x-5=02-3x+1=05+4x-1=0通过学生计算一些特殊的一元二次方程的两根之和与两根之积,启发学生从中发现存在的一般规律,渗透特殊到一般的思考方法。二、自主交流 探究新知【探究】一般地,对于关于x的一元二次方程ax2bxc0(a0) 用求根公式求出它的两个根x1、x2 ,由一元二次方程ax2bxc0的求根公式知x1=,x2=,能得出以下结果:x1x2=,即:两根之和等于 x1x2=,即:两根之积等于 特殊的:若一元二次方程+px+q=0的两根为、,则:x1x2= -p x1x2= q 如果把方程ax2bxc0(a0)的二次项系数化为1,则方程变形为x2x0(a0),则以x1,x2为根的一元二次方程(二次项系数为1)是:x2-(x1+x2)xx1x20(a0)让学生自己发现规律,找到成功感,再从理论上加以验证,让学生经历从特殊到一般的科学探究过程。三、自主应用 巩固新知【例1】求下列方程的两根之和与两根之积.(1)-6x-15=0 (2)5x-1= 4(3)=4 (4)2=3x(5)-(k+1)x+2k-1=0(x是未知数,k是常数)【例2】已知方程5x2kx-60的一个根为2,求它的另一个根及k的值;解:设方程的另一个根是x1,那么 x1= 又x1+2= k= 【例3】利用根与系数的关系,求一元二次方程2x23x-10的两个根的(1)平方和 (2)倒数和解:设方程的两个根分别为x1,x2,那么x1+x2= , x1x2= (1) (x1+x2)2= x12+2 +x22 x12+x22=(x1+x2)2-2 = (2) 【练习】42 练习让学生初步学会运用根与系数的关系来求两根和与两根积,比较简便,(3)、(4)、(5)的设计加深学生对根与系数关系的本质理解。进一步巩固根与系数的关系,体会“整体代入”思想在解题中的运用,可起到简便运算的作用。四、自主总结 拓展新知不解方程,根据一元二次方程根与系数的关系和已知条件结合,可求得一些代数式的值;求得方程的另一根和方程中的待定系数的值。1、先化成一般形式,再确定a,b,c.2、当且仅当b2-4ac0时,才能应用根与系关系.3、要

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论