高考数学 专题2 指数函数、对数函数和幂函数章末复习提升课件 湘教版必修1.ppt_第1页
高考数学 专题2 指数函数、对数函数和幂函数章末复习提升课件 湘教版必修1.ppt_第2页
高考数学 专题2 指数函数、对数函数和幂函数章末复习提升课件 湘教版必修1.ppt_第3页
高考数学 专题2 指数函数、对数函数和幂函数章末复习提升课件 湘教版必修1.ppt_第4页
高考数学 专题2 指数函数、对数函数和幂函数章末复习提升课件 湘教版必修1.ppt_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2章 指数函数 对数函数和幂函数 1 知识网络系统盘点 提炼主干 2 要点归纳整合要点 诠释疑点 3 题型研修突破重点 提升能力 章末复习提升 1 指数和对数 1 分数指数的定义 2 如同减法是加法的逆运算 除法是乘法的逆运算一样 对数运算是指数运算的逆运算 ab n logan b a 0 a 1 n 0 由此可得到对数恒等式 alogan n b logaab 3 对数换底公式logan a 0 b 0 a 1 b 1 n 0 的意义在于把各个不同底数的对数换成相同底数的对数 这样 一可以进行换算 二可以通过对数表求值 4 指数和对数的运算法则有 am an am n logam logan loga mn am n amn logamn nlogam a r m n r m n r a 0 a 1 2 指数函数 对数函数和幂函数 1 要熟记这三个函数在不同条件下的图象 并能熟练地由图象 读 出该函数的主要性质 2 同底数的指数函数和对数函数的图象关于直线y x成轴对称图形 由图可 读 出指数函数和对数函数的主要性质 如果两个函数y f x 和x g x 描述的是同一个对应法则 则称这两个函数互为反函数 这时两者之间满足关系g f x x和f g y y 并且它们的图象关于直线y x成轴对称 函数f叫作g的反函数 g也叫作f的反函数 f的定义域是g的值域 f的值域是g的定义域 两者同为递增或递减 由上面反函数的定义 我们知道 指数函数y ax a 0且a 1 和同底数的对数函数y logax a 0且a 1 互为反函数 这给研究对数函数的图象和性质带来了方便 3 幂函数y xn在第一象限内的图象由幂指数的不同取值可分为三种走势 由下图 当n 0时幂函数的主要性质是 恒过 0 0 1 1 两点 在区间 0 上为增函数 当n 0时幂函数的主要性质有 恒过点 1 1 在区间 0 上为递减函数 图象走向和x轴 y轴正向无限接近 3 函数与方程 1 实系数一元二次方程当 0时有两个不等实根 当 0时有两个相等实根 当 0时无实数根 2 方程f x 0的解就是函数y f x 的图象和x轴交点的横坐标 也叫作函数的零点 方程f x g x 的解也就是两个函数y f x 和y g x 图象交点的横坐标 3 可以用二分法或其他近似方法求得函数零点的近似值 4 函数模型及其应用 1 目前我们能建立的函数模型主要是一次函数 二次函数 幂函数 指数函数和对数函数的模型 2 建模的目的是 模拟实际问题和用模拟函数的性质去推测判断未进行测量或不便测量的数据 特别是实际问题的未来走势 3 建模的大致步骤是 了解和简化实际问题 建立实际问题的数学模型 分析所得数学模型 把模型所判断的结论和实际模型的表现加以比较 改进数学模型 题型一有关指数 对数的运算问题指数与指数运算 对数与对数运算是两个重要的知识点 不仅是本章考查的重要题型 也是高考的必考内容 指数式的运算首先要注意化简顺序 一般负指数先转化成正指数 根式化为指数式 其次若出现分式 则要注意把分子 分母因式分解以达到约分的目的 对数运算首先要注意公式应用过程中范围的变化 前后要等价 其次要熟练地运用对数的三个运算性质 并根据具体问题合理利用对数恒等式和换底公式等 换底公式是对数计算 化简 证明常用的公式 一定要掌握并灵活运用 log39 9 2 9 7 题型二指数函数 对数函数及幂函数的图象与性质函数的图象是研究函数性质的前提和基础 它较形象直观地反映了函数的一切性质 教材对幂 指 对三个函数的性质的研究也正好体现了由图象到性质 由具体到抽象的过程 突出了函数图象在研究相应函数性质时的作用 例2已知函数f x 是定义在r上的偶函数 当x 0时 1 画出函数f x 的图象 解先作出当x 0时 f x x的图象 利用偶函数的图象关于y轴对称 再作出f x 在x 0 时的图象 2 根据图象写出f x 的单调区间 并写出函数的值域 解函数f x 的单调递增区间为 0 单调递减区间为 0 值域为 0 1 跟踪演练2 1 函数f x lnx的图象与函数g x x2 4x 4的图象的交点个数为 a 0b 1c 2d 3解析作出两个函数的图象 利用数形结合思想求解 g x x2 4x 4 x 2 2 在同一平面直角坐标系内画出函数f x lnx与g x x 2 2的图象 如图 由图可得两个函数的图象有2个交点 c 解析由3x 1 0得x 0 但从选项d的函数图象可以看出函数在 0 上是单调递增函数 两者矛盾 可排除选项d 故选c 答案c 题型三比较大小比较几个数的大小问题是指数函数 对数函数和幂函数的重要应用 其基本方法是 将需要比较大小的几个数视为某类函数的函数值 其主要方法可分以下三种 1 根据函数的单调性 如根据一次函数 二次函数 指数函数 对数函数 幂函数的单调性 利用单调性的定义求解 2 采用中间量的方法 实际上也要用到函数的单调性 常用的中间量如0 1 1等 3 采用数形结合的方法 通过函数的图象解决 a a b cb c b ac c a bd b a c 故有a b c a 跟踪演练3 1 下列不等式成立的是 a log32 log23 log25b log32 log25 log23c log23 log32 log25d log23 log25 log32解析由于log31 log32 log33 log22 log23 log25 即0 log32 1 1 log23 log25 所以log32 log23 log25 故选a a a x y zb z y xc y x zd z x y c 题型四函数的零点与方程的根的关系及应用根据函数零点的定义 函数y f x 的零点就是方程f x 0的根 判断一个方程是否有零点 有几个零点 就是判断方程f x 0是否有根 有几个根 从图形上看 函数的零点就是函数y f x 的图象与x轴的交点的横坐标 函数零点 方程的根 函数图象与x轴交点的横坐标三者之间有着内在的本质联系 利用它们之间的关系 可以解决很多函数 方程与不等式的问题 在高考中有许多问题涉及三者的相互转化 应引起重视 a f x0 0b f x0 0c f x0 0d f x0 的符号不确定 答案c 显然两个图象的交点的横坐标为a 于是在 0 a 区间上 y 2x的图象在 a 0 1 b 1 2 c 2 3 d 3 4 解析建立函数g x x3 22 x 计算判断g 0 g 1 g 2 g 3 g 4 的符号 设g x x3 22 x 显然g 1 g 2 0 于是函数g x 的零点 答案b 题型五分类讨论思想本章常见分类讨论思想的应用如下表 例5已知偶函数f x 在x 0 上是增函数 f 0 求不等式f logax 0 a 0 且a 1 的解集 解 f x 是偶函数 且f x 在 0 上是增函数 课堂小结1 函数是高中数学极为重要的内容 函数思想和函数方法贯穿高中数学的整个过程 纵观历年高考试题 对本章的考查是以基本函数形式出现的综合题和应用题 一直是常考不衰的热点问题 2 从考查角度看 指数函数 对数函数概念的考查以基本概念与基本计算为主 对图象的考查重在考查平移变换 对称变换以及利用数形结合的思想方法解决数学问题的能力 对幂函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论