安徽省阜阳三中高考数学二轮复习 数列 7数列应用问题学案 理.doc_第1页
安徽省阜阳三中高考数学二轮复习 数列 7数列应用问题学案 理.doc_第2页
安徽省阜阳三中高考数学二轮复习 数列 7数列应用问题学案 理.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二轮复习专题三:数列3.8、数列应用问题【学习目标】1.理解数列的概念和几种简单的表示方法(列表、图象、通项公式)2.了解数列通项公式的意义(数列是自变量为正整数的一类函数)3.理解数列的函数特征,能利用数列的周期性,单调性解决数列的有关问题。4.以极度的热情投入到课堂学习中,体验学习的快乐。【学法指导】1. 先认真阅读教材和一轮复习笔记,处理好知识网络构建,构建知识体系,形成系统的认识;2.限时30分钟独立、规范完成探究部分,并总结规律方法;3.找出自己的疑惑和需要讨论的问题准备课上讨论质疑;【高考方向】1.数列的定义及对规律的发现。2.数列的函数特性:周期性,单调性和最值。【课前预习】:一、知识网络构建1.数列的规律性问题发现的入手点在哪?2.数列作为函数有哪些函数特性?它们分别的处理方法是什么?二、高考真题再现.数列的综合应用:函数思想、方程思想、分类讨论等思想在解决数列综合问题时常常用到。数列与函数、数列与不等式的综合、用数列知识解决实际问题等内容。数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略通过解题后的反思,找准自己的问题,总结成功的经验,吸取失败的教训,增强解综合题的信心和勇气,提高分析问题和解决问题的能力(2007安徽21)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d0),因此,历年所交纳的储务金数目a1,a2,是一个公差为d的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r0),那么,在第n年末,第一年所交纳的储备金就变为a1(1r)a1,第二年所交纳的储备金就变为a2(1r)a2,以tn表示到第n年末所累计的储备金总额.()写出tn与tn1(n2)的递推关系式;()求证:tnanbn,其中an是一个等比数列,bn是一个等差数列.1. 某地为了防止水土流失,植树造林,绿化荒沙地,每年比上一年多植相同亩数的林木,但由于自然环境和人为因素的影响,每年都有相同亩数的土地沙化,具体情况为下表所示:1998年1999年2000年新植亩数100014001800沙地亩数252002400022400而一旦植完,则不会被沙化。问:(1)每年沙化的亩数为多少?(2)到那一年可绿化完全部荒沙地?2某公司按现有能力,每月收入为70万元,公司分析部门测算,若不进行改革,入世后因竞争加剧收入将逐月减少分析测算得入世第一个月收入将减少3万元,以后逐月多减少2万元,如果进行改革,即投入技术改造300万元,且入世后每月再投入1万元进行员工培训,则测算得自入世后第一个月起累计收入tn与时间n(以月为单位)的关系为tn=an+b,且入世第一个月时收入将为90万元,第二个月时累计收入为170万元,问入世后经过几个月,该公司改革后的累计纯收入高于不改革时的累计纯收入 例从原点出发的某质点m, 按向量=(0,1)移动的概率为,按向量=(0,2)移动的概率为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论