




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行四边形的判定2学案 单位:孝义一中 年级: 八 设计者: 时间:2017年3月课题平行四边形的判定课型新授课时第2课时教学目标知识技能掌握用一组对边平行且相等来判定平行四边形的方法。数学思考通过猜想、验证、推理、交流等数学活动,发展学生的推理能力和应用数学的意识,掌握证明与举反例是判断一个数学命题是否成立的基本方法。解决问题通过平行四边形判定条件的探索过程,感受数学思考过程的条理性及解决问题策略的多样性,发展学生的实践能力及创新意识。情感态度在观察、猜想、分析的过程中发展学生的主动探索、质疑和独立思考的习惯。教学重点平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法。教学难点平行四边形的判定定理与性质定理的综合应用。课前准备(教具、活动准备等)教 学 过 程教学步骤师生活动设计意图活动一:课堂引入1 平行四边形的性质;2 平行四边形的判定方法;3 【探究】 取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?结论:一组对边平行且相等的四边形是平行四边形。 你能证明你发现的上述结论吗?复习已学知识为更好地学习本课打下基础。解决问题的关键是把未知向已知转化,提出这个问题后,引导学生在上一节课的基础上,用不同的方法进行证明,以活跃学生的思维。活动二:例习题分析例1(补充)已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF 分析:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单 证明: 四边形ABCD是平行四边形, ADCB,AD=CD E、F分别是AD、BC的中点, DEBF,且DE=AD,BF=BC DE=BF 四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形) BE=DF例2(补充)已知:如图,ABCD中,E、F分别是AC上两点,且BEAC于E,DFAC于F求证:四边形BEDF是平行四边形分析:因为BEAC于E,DFAC于F,所以BEDF需再证明BE=DF,这需要证明ABE与CDF全等,由角角边即可 证明: 四边形ABCD是平行四边形, AB=CD,且ABCD BAE=DCF BEAC于E,DFAC于F, BEDF,且BEA=DFC=90 ABECDF (AAS) BE=DF 四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形)此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路。本节课的知识点不难,但学生灵活运用判定定理去解决相关问题并不容易,本题可有多种方法证明,课堂中要发挥本题一题多解的作用。加强学生一题多解和寻找最佳解题方法的训练。活动三:随堂练习1(选择)在下列给出的条件中,能判定四边形ABCD为平行四边形的是( )(A)ABCD,AD=BC (B)A=B,C=D (C)AB=CD,AD=BC (D)AB=AD,CB=CD2已知:如图,ACED,点B在AC上,且AB=ED=BC, 找出图中的平行四边形,并说明理由3已知:如图,在ABCD中,AE、CF分别是DAB、BCD的平分线求证:四边形AFCE是平行四边形。通过习题,巩固了所学的平行四边形的性质及判定,达到了学以致用的目的,培养了学生的应用意识。活动四:课堂小结:平行四边形的判定方法:(1)两组对边分别平行(2)两组对边分别相等(3)对角线互相平分(4)两组对角分别相等(5)一组对边平行且相等由学生归纳可以判断一个四边形是平行四边形的方法,教师引导学生从边、角、对角线这三个方面总结。活动五:课后练习1判断题:(1)相邻的两个角都互补的四边形是平行四边形;( )(2)两组对角分别相等的四边形是平行四边形;( )(3)一组对边平行,另一组对边相等的四边形是平行四边形; ( )(4)一组对边平行且相等的四边形是平行( )(5)对角线相等的四边形是平行四边形; ( )(6)对角线互相平分的四边形是平行四边形。( )2延长ABC的中线AD至E,使DE=AD求证:四边形ABEC是平行四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考冲刺请假申请书
- 企业资质注销申请书
- 疫情志愿申请书英语
- 申请支援疫情申请书
- 老人廉租房申请书
- 潜水哇里的小鱼课件
- 2025绿色植物租赁合同标准范本
- 2025年传染病考试题及答案
- 更换老旧水表申请书
- 网贷借款理由申请书
- 机关档案管理工作培训课件
- 生物武器伤害及其防护课件
- 简约大气商业计划书项目融资模板
- 内经选读上古天真论课件
- GJB9001C标准内审员考试自测题试题含答案
- 一、长方体和正方体表面涂色的
- GB∕T 36667-2018 船舶和海上技术 船舶系泊和拖带设备舷内带缆桩(钢板型)
- 猪肉采购服务方案(完整版)
- kinetix6200和6500模块化多轴伺服驱动器用户手册
- 【图文】GB8624-2012建筑材料及制品燃烧性能分级(精)
- “日本经济”课程教学大纲
评论
0/150
提交评论