




已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第5节直线 平面垂直的判定及其性质 最新考纲1 以立体几何的定义 公理和定理为出发点 认识和理解空间中线面垂直的有关性质与判定定理 2 能运用公理 定理和已获得的结论证明一些空间图形的垂直关系的简单命题 1 直线与平面垂直 1 直线和平面垂直的定义如果一条直线l与平面 内的直线都垂直 就说直线l与平面 互相垂直 知识梳理 任意 2 判定定理与性质定理 两条相交直线 l a l b a b 平行 a b 2 平面与平面垂直 1 平面与平面垂直的定义两个平面相交 如果它们所成的二面角是 就说这两个平面互相垂直 直二面角 2 判定定理与性质定理 垂线 l l 交线 a l a l 常用结论与微点提醒 1 两个重要结论 1 若两平行线中的一条垂直于一个平面 则另一条也垂直于这个平面 2 若一条直线垂直于一个平面 则它垂直于这个平面内的任何一条直线 证明线线垂直的一个重要方法 2 使用线面垂直的定义和线面垂直的判定定理 不要误解为 如果一条直线垂直于平面内的无数条直线 就垂直于这个平面 3 线线 线面 面面垂直间的转化 1 思考辨析 在括号内打 或 1 直线l与平面 内的无数条直线都垂直 则l 2 垂直于同一个平面的两平面平行 3 若两平面垂直 则其中一个平面内的任意一条直线垂直于另一个平面 4 若平面 内的一条直线垂直于平面 内的无数条直线 则 诊断自测 解析 1 直线l与平面 内的无数条直线都垂直 则有l 或l与 斜交或l 或l 故 1 错误 2 垂直于同一个平面的两个平面平行或相交 故 2 错误 3 若两个平面垂直 则其中一个平面内的直线可能垂直于另一平面 也可能与另一平面平行 也可能与另一平面相交 也可能在另一平面内 故 3 错误 4 若平面 内的一条直线垂直于平面 内的所有直线 则 故 4 错误 答案 1 2 3 4 2 必修2p73a组t1改编 下列命题中不正确的是 a 如果平面 平面 且直线l 平面 则直线l 平面 b 如果平面 平面 那么平面 内一定存在直线平行于平面 c 如果平面 不垂直于平面 那么平面 内一定不存在直线垂直于平面 d 如果平面 平面 平面 平面 l 那么l 解析根据面面垂直的性质 a不正确 直线l 平面 或l 或直线l与 相交 答案a 3 2018 湖南六校联考 已知m和n是两条不同的直线 和 是两个不重合的平面 下面给出的条件中一定能推出m 的是 a 且m b m n且n c m n且n d m n且 解析由线线平行性质的传递性和线面垂直的判定定理 可知c正确 答案c 4 2017 全国 卷 在正方体abcd a1b1c1d1中 e为棱cd的中点 则 a a1e dc1b a1e bdc a1e bc1d a1e ac 解析如图 由题设知 a1b1 平面bcc1b1且bc1 平面bcc1b1 从而a1b1 bc1 又b1c bc1 且a1b1 b1c b1 所以bc1 平面a1b1cd 又a1e 平面a1b1cd 所以a1e bc1 答案c 5 边长为a的正方形abcd沿对角线bd折成直二面角 则折叠后ac的长为 解析如图所示 取bd的中点o 连接a o co 则 a oc是二面角a bd c的平面角 即 a oc 90 答案a 考点一线面垂直的判定与性质 例1 如图 在四棱锥p abcd中 pa 底面abcd ab ad ac cd abc 60 pa ab bc e是pc的中点 证明 1 cd ae 2 pd 平面abe 证明 1 在四棱锥p abcd中 pa 底面abcd cd 平面abcd pa cd 又 ac cd 且pa ac a cd 平面pac 而ae 平面pac cd ae 2 由pa ab bc abc 60 可得ac pa e是pc的中点 ae pc 由 1 知ae cd 且pc cd c ae 平面pcd 而pd 平面pcd ae pd pa 底面abcd ab 平面abcd pa ab 又 ab ad 且pa ad a ab 平面pad 而pd 平面pad ab pd 又 ab ae a pd 平面abe 规律方法1 证明直线和平面垂直的常用方法有 1 判定定理 2 垂直于平面的传递性 a b a b 3 面面平行的性质 a a 4 面面垂直的性质 a l a l l 2 证明线面垂直的核心是证线线垂直 而证明线线垂直则需借助线面垂直的性质 因此 判定定理与性质定理的合理转化是证明线面垂直的基本思想 求证 pa cd 证明因为ab为圆o的直径 所以ac cb 由余弦定理得cd2 db2 bc2 2db bccos30 3 所以cd2 db2 bc2 即cd ab 因为pd 平面abc cd 平面abc 所以pd cd 由pd ab d得 cd 平面pab 又pa 平面pab 所以pa cd 考点二面面垂直的判定与性质 例2 如图 在四棱锥p abcd中 ab cd ab ad cd 2ab 平面pad 底面abcd pa ad e和f分别是cd和pc的中点 求证 1 pa 底面abcd 2 be 平面pad 3 平面bef 平面pcd 证明 1 平面pad 底面abcd 且pa垂直于这两个平面的交线ad pa 平面pad pa 底面abcd 2 ab cd cd 2ab e为cd的中点 ab de 且ab de 四边形abed为平行四边形 be ad 又 be 平面pad ad 平面pad be 平面pad 3 ab ad 而且abed为平行四边形 be cd ad cd 由 1 知pa 底面abcd cd 平面abcd pa cd 且pa ad a pa ad 平面pad cd 平面pad 又pd 平面pad cd pd e和f分别是cd和pc的中点 pd ef cd ef 又be cd且ef be e cd 平面bef 又cd 平面pcd 平面bef 平面pcd 规律方法1 证明平面和平面垂直的方法 1 面面垂直的定义 2 面面垂直的判定定理 2 已知两平面垂直时 一般要用性质定理进行转化 在一个平面内作交线的垂线 转化为线面垂直 然后进一步转化为线线垂直 训练2 2017 北京卷 如图 在三棱锥p abc中 pa ab pa bc ab bc pa ab bc 2 d为线段ac的中点 e为线段pc上一点 1 求证 pa bd 2 求证 平面bde 平面pac 3 当pa 平面bde时 求三棱锥e bcd的体积 1 证明 pa ab pa bc ab 平面abc bc 平面abc 且ab bc b pa 平面abc 又bd 平面abc pa bd 2 证明 ab bc d是ac的中点 bd ac 由 1 知pa 平面abc pa 平面pac 平面pac 平面abc 平面pac 平面abc ac bd 平面abc bd ac bd 平面pac bd 平面bde 平面bde 平面pac 3 解 pa 平面bde 又平面bde 平面pac de pa 平面pac pa de 由 1 知pa 平面abc de 平面abc d是ac的中点 e为pc的中点 考点三平行与垂直的综合问题 多维探究 命题角度1多面体中平行与垂直关系的证明 例3 1 2017 山东卷 由四棱柱abcd a1b1c1d1截去三棱锥c1 b1cd1后得到的几何体如图所示 四边形abcd为正方形 o为ac与bd的交点 e为ad的中点 a1e 平面abcd 1 证明 a1o 平面b1cd1 2 设m是od的中点 证明 平面a1em 平面b1cd1 证明 1 取b1d1的中点o1 连接co1 a1o1 由于abcd a1b1c1d1是四棱柱 所以a1o1 oc a1o1 oc 因此四边形a1oco1为平行四边形 所以a1o o1c 又o1c 平面b1cd1 a1o 平面b1cd1 所以a1o 平面b1cd1 2 因为ac bd e m分别为ad和od的中点 所以em bd 又a1e 平面abcd bd 平面abcd 所以a1e bd 因为b1d1 bd 所以em b1d1 a1e b1d1 又a1e em 平面a1em a1e em e 所以b1d1 平面a1em 又b1d1 平面b1cd1 所以平面a1em 平面b1cd1 规律方法1 三种垂直的综合问题 一般通过作辅助线进行线线 线面 面面垂直间的转化 2 垂直与平行的结合问题 求解时应注意平行 垂直的性质及判定的综合应用 命题角度2平行垂直中探索性问题 例3 2 如图所示 平面abcd 平面bce 四边形abcd为矩形 bc ce 点f为ce的中点 1 证明 ae 平面bdf 2 点m为cd上任意一点 在线段ae上是否存在点p 使得pm be 若存在 确定点p的位置 并加以证明 若不存在 请说明理由 1 证明连接ac交bd于o 连接of 如图 四边形abcd是矩形 o为ac的中点 又f为ec的中点 of为 ace的中位线 of ae 又of 平面bdf ae 平面bdf ae 平面bdf 2 解当p为ae中点时 有pm be 证明如下 取be中点h 连接dp ph ch p为ae的中点 h为be的中点 ph ab 又ab cd ph cd p h c d四点共面 平面abcd 平面bce 平面abcd 平面bce bc cd 平面abcd cd bc cd 平面bce 又be 平面bce cd be bc ce h为be的中点 ch be 又cd ch c be 平面dphc 又pm 平面dphc be pm 即pm be 规律方法1 求条件探索性问题的主要途径 1 先猜后证 即先观察与尝试给出条件再证明 2 先通过命题成立的必要条件探索出命题成立的条件 再证明充分性 2 涉及点的位置探索性问题一般是先根据条件猜测点的位置再给出证明 探索点存在问题 点多为中点或三等分点中某一个 也可以根据相似知识建点 命题角度3空间位置关系与几何体的度量计算 例3 3 2017 全国 卷 如图 在四棱锥p abcd中 ab cd 且 bap cdp 90 1 证明由已知 bap cdp 90 得ab pa cd pd 由于ab cd 故ab pd 又pa pd p pa pd 平面pad 从而ab 平面pad 又ab 平面pab 所以平面pab 平面pad 2 解如图 在平面pad内作pe ad 垂足为e 由 1 知 ab 平面pad 故ab pe 又ab ad a 可得pe 平面abcd 规律方法1 本题证明的关键是垂直与平行的转化 如由ab cd cd pd 从而得ab pd 进一步证明平面pab中的ab 平面pad 再运用面面垂直的判定定理得出平面pab 平面pad 2 第 2 问先由已知分别求出四棱锥各个侧面的底边长和高 再求出四棱锥的侧面积 其中利用第 1 问的结论得出ab 平面pad 从而进一步证明pe 平面abcd 确定四棱锥p abcd的高pe 将空间论证与几何体的计算交汇渗透 这是命题的方向 1 求证 ac 平面fbc 2 求四面体fbcd的体积 3 线段ac上是否存在点m 使ea 平面fdm 若存在 请说明其位置 并加以证明 若不存在 请说明理由 所以ac2 bc2 ab2 所以ac bc 又因为ac fb bc fb b bc fb 平面fbc 所以ac 平面fbc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年无人机高级维修师考试题及答案
- 期末导游业务试题及答案
- 2025飞机维修技工考试题及答案
- 九年级历史下册 第三单元 第8课《第一次世界大战的进程及结果》说课稿3 华东师大版
- 高速公路承包施工合同(3篇)
- 公司向个人提供无抵押贷款合同模板
- 股权激励型干股股份投资合作协议书
- 高标准工伤赔偿合同
- 2025贵港公务员面试题及答案
- 宠物保险代理公司与宠物主人服务合同
- 2025司法局招聘司法所协理员历年考试试题与答案
- 金太阳福建省2025-2026学年高三上学期9月开学联考英语试卷
- 2025年共青团入团考试测试题库及答案
- (高清版)DZT 0261-2014 滑坡崩塌泥石流灾害调查规范(1:50000)
- GA 1551.6-2021石油石化系统治安反恐防范要求第6部分:石油天然气管道企业
- 《古筝的艺术流派》
- 徐州的传统民俗
- DDI高绩效辅导经典课程讲义
- 公共秩序部车辆管理办法
- 我的暑假生活PPT模板
- DB11-T 775-2021多孔混凝土铺装技术规程
评论
0/150
提交评论