Matlab优化工具箱学习.doc_第1页
Matlab优化工具箱学习.doc_第2页
Matlab优化工具箱学习.doc_第3页
Matlab优化工具箱学习.doc_第4页
Matlab优化工具箱学习.doc_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Matlab优化工具箱学习 Posted on 2009-10-24 19:25 feisky 阅读(740) 评论(0) 编辑 收藏 一直知道Matlab的优化工具箱,可是一直都没有学习,Matlab提供的功能主要有线性规划、非线性规划、极值问题等,这些也是比较常见的优化问题。优化工具箱概述1.MATLAB求解优化问题的主要函数2.优化函数的输入变量使用优化函数或优化工具箱中其它优化函数时, 输入变量见下表:3. 优化函数的输出变量下表:4控制参数options的设置Options中常用的几个参数的名称、含义、取值如下:(1)Display: 显示水平.取值为off时,不显示输出; 取值为iter时,显示每次迭代的信息;取值为final时,显示最终结果.默认值为final.(2)MaxFunEvals: 允许进行函数评价的最大次数,取值为正整数.(3) MaxIter: 允许进行迭代的最大次数,取值为正整数控制参数options可以通过函数optimset创建或修改。命令的格式如下:(1) options=optimset(optimfun) 创建一个含有所有参数名,并与优化函数optimfun相关的默认值的选项结构options.(2)options=optimset(param1,value1,param2,value2,.) 创建一个名称为options的优化选项参数,其中指定的参数具有指定值,所有未指定的参数取默认值.(3)options=optimset(oldops,param1,value1,param2, value2,.) 创建名称为oldops的参数的拷贝,用指定的参数值修改oldops中相应的参数.例:opts=optimset(Display,iter,TolFun,1e-8) 该语句创建一个称为opts的优化选项结构,其中显示参数设为iter, TolFun参数设为1e-8.用Matlab解无约束优化问题 一元函数无约束优化问题常用格式如下:(1)x= fminbnd (fun,x1,x2)(2)x= fminbnd (fun,x1,x2 ,options)(3)x,fval= fminbnd(.)(4)x,fval,exitflag= fminbnd(.)(5)x,fval,exitflag,output= fminbnd(.)其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。 函数fminbnd的算法基于黄金分割法和二次插值法,它要求目标函数必须是连续函数,并可能只给出局部最优解。例1 求在0x 0,且a11 a12;同理, p2 = b2 - a21 x1- a22 x2 ,b2,a21,a22 02成本与产量成负指数关系甲的成本随其产量的增长而降低,且有一个渐进值,可以假设为负指数关系,即: 同理, 模型建立总利润为: z(x1,x2)=(p1-q1)x1+(p2-q2)x2若根据大量的统计数据,求出系数b1=100,a11=1,a12=0.1,b2=280,a21=0.2,a22=2,r1=30,1=0.015,c1=20, r2=100,2=0.02,c2=30,则问题转化为无约束优化问题:求甲,乙两个牌号的产量x1,x2,使总利润z最大.为简化模型,先忽略成本,并令a12=0,a21=0,问题转化为求: z1 = ( b1 - a11x1 ) x1 + ( b2 - a22x2 ) x2 的极值. 显然其解为x1 = b1/2a11 = 50, x2 = b2/2a22 = 70,我们把它作为原问题的初始值.模型求解1.建立M-文件fun.m: function f = fun(x) y1=(100-x(1)- 0.1*x(2)-(30*exp(-0.015*x(1)+20)*x(1); y2=(280-0.2*x(1)- 2*x(2)-(100*exp(-0.02*x(2)+30)*x(2); f=-y1-y2;2.输入命令: x0=50,70; x=fminunc(fun,x0), z=fun(x)3.计算结果: x=23.9025, 62.4977, z=6.4135e+003 即甲的产量为23.9025,乙的产量为62.4977,最大利润为6413.5.二次规划用MATLAB软件求解,其输入格式如下: 1.x=quadprog(H,C,A,b); 2.x=quadprog(H,C,A,b,Aeq,beq); 3.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB); 4.x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0); 5.x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0,options); 6.x,fval=quaprog(.); 7.x,fval,exitflag=quaprog(.); 8.x,fval,exitflag,output=quaprog(.);例1 min f(x1,x2)=-2x1-6x2+x12-2x1x2+2x22 s.t. x1+x22 -x1+2x22 x10, x20 1、写成标准形式:2、 输入命令: H=1 -1; -1 2; c=-2 ;-6;A=1 1; -1 2;b=2;2; Aeq=;beq=; VLB=0;0;VUB=; x,z=quadprog(H,c,A,b,Aeq,beq,VLB,VUB)3、运算结果为: x =0.6667 1.3333 z = -8.2222一般非线性规划标准型为:min F(X) s.t AX=b G(X) Ceq(X)=0 VLBXVUB其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成的向量,其它变量的含义与线性规划、二次规划中相同.用Matlab求解上述问题,基本步骤分三步:1. 首先建立M文件fun.m,定义目标函数F(X):function f=fun(X);f=F(X);2. 若约束条件中有非线性约束:G(X)或Ceq(X)=0,则建立M文件nonlcon.m定义函数G(X)与Ceq(X):function G,Ceq=nonlcon(X)G=.Ceq=.3. 建立主程序.非线性规划求解的函数是fmincon,命令的基本格式如下: (1) x=fmincon(fun,X0,A,b) (2) x=fmincon(fun,X0,A,b,Aeq,beq) (3) x=fmincon(fun,X0,A,b, Aeq,beq,VLB,VUB) (4) x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB,nonlcon)(5)x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB,nonlcon,options) (6) x,fval= fmincon(.) (7) x,fval,exitflag= fmincon(.) (8)x,fval,exitflag,output= fmincon(.)注意:1 fmincon函数提供了大型优化算法和中型优化算法。默认时,若在fun函数中提供了梯度(options参数的GradObj设置为on),并且只有上下界存在或只有等式约束,fmincon函数将选择大型算法。当既有等式约束又有梯度约束时,使用中型算法。2 fmincon函数的中型算法使用的是序列二次规划法。在每一步迭代中求解二次规划子问题,并用BFGS法更新拉格朗日Hessian矩阵。3 fmincon函数可能会给出局部最优解,这与初值X0的选取有关。例2 s.t.2、先建立M-文件 fun3.m: function f=fun3(x); f=-x(1)-2*x(2)+(1/2)*x(1)2+(1/2)*x(2)23、再建立主程序youh2.m: x0=1;1; A=2 3 ;1 4; b=6;5; Aeq=;beq=; VLB=0;0; VUB=; x,fval=fmincon(fun3,x0,A,b,Aeq,beq,VLB,VUB)4、运算结果为: x = 0.7647 1.0588 fval = -2.0294例31先建立M文件 fun4.m,定义目标函数: function f=fun4(x); f=exp(x(1) *(4*x(1)2+2*x(2)2+4*x(1)*x(2)+2*x(2)+1);2再建立M文件mycon.m定义非线性约束: function g,ceq=mycon(x) g=x(1)+x(2);1.5+x(1)*x(2)-x(1)-x(2);-x(1)*x(2)-10;3主程序youh3.m为:x0=-1;1;A=;b=;Aeq=1 1;beq=0;vlb=;vub=;x,fval=fmincon(fun4,x0,A,b,Aeq,beq,vlb,vub,mycon)3. 运算结果为: x = -1.2250 1.2250 fval = 1.8951例4资金使用问题设有400万元资金, 要求4年内使用完, 若在一年内使用资金x万元, 则可得效益万元(效益不能再使用),当年不用的资金可存入银行, 年利率为10%. 试制定出资金的使用计划, 以使4年效益之和为最大.设变量表示第i年所使用的资金数,则有 1先建立M文件 fun44.m,定义目标函数: function f=fun44(x) f=-(sqrt(x(1)+sqrt(x(2)+sqrt(x(3)+sqrt(x(4);2再建立M文件mycon1.m定义非线性约束: function g,ceq=mycon1(x) g(1)=x(1)-400;g(2)=1.1*x(1)+x(2)-440;g(3)=1.21*x(1)+1.1*x(2)+x(3)-484;g(4)=1.331*x(1)+1.21*x(2)+1.1*x(3)+x(4)-532.4;ceq=03主程序youh4.m为:x0=1;1;1;1;vlb=0;0;0;0;vub=;A=;b=;Aeq=;beq=;x,fval=fmincon(fun44,x0,A,b,Aeq,beq,vlb,vub,mycon1)得到 线性规划问题线性规划问题是目标函数和约束条件均为线性函数的问题,MATLAB6.0 解决的线性规划问题的标准形式为: min f(x)sub.to: x A b x Aeq = beq ub x lb 其中 f、x、b、beq、lb、ub 为向量,A、Aeq 为矩阵。 其它形式的线性规划问题都可经过适当变换化为此标准形式。x = linprog(f,A,b,Aeq,beq,lb,ub,x0) %设置初值 x0 “半无限”有约束的多元函数最优解 x = fseminf(fun,x0,ntheta,seminfcon) x = fseminf(fun,x0,ntheta,seminfcon,A,b) x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq) x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub) x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,options) x,fval = fseminf() x,fval,exitflag = fseminf() x,fval,exitflag,output = fseminf() x,fval,exitflag,output,lambda = fseminf() 极小化极大问题例子:最小二乘最优问题 约束线性最小二乘非线性数据拟合非线性最小二乘非负线性最小二乘非线性方程的解 非线性方程的标准形式为 f(x)=0 函数 fzero 格式 x = fzero (fun,x0) %用 fun 定义表达式 f(x),x0 为初始解。 x = fzero (fun,x0,options) x,fval = fzero() %fval=f(x) x,fval,exitflag = fzero() x,fval,exitflag,output = fzero() 说明 该函数采用数值解求方程 f(x)=0 的根。 非线性方程组的解 非线性方程组的标准形式为:F(x) = 0 其中:x 为向量,F(x)为函数向量。 函数 fsolve 格式 x = fsolve(fun,x0) %用 fun 定义向量函数,其定义方式为:先定义方程函数function F = myfun (x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论