【三维设计】高中数学 第二章 §5 第二课时 直线与平面的夹角应用创新演练 北师大版选修21 .doc_第1页
【三维设计】高中数学 第二章 §5 第二课时 直线与平面的夹角应用创新演练 北师大版选修21 .doc_第2页
【三维设计】高中数学 第二章 §5 第二课时 直线与平面的夹角应用创新演练 北师大版选修21 .doc_第3页
【三维设计】高中数学 第二章 §5 第二课时 直线与平面的夹角应用创新演练 北师大版选修21 .doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【三维设计】高中数学 第二章 5 第二课时 直线与平面的夹角应用创新演练 北师大版选修2-1 1已知直线l的一个方向向量为a(1,1,0),平面的一个法向量为(1,2,2),则直线l与平面夹角的余弦值为()a.bc d.解析:cosa,则直线l与平面的夹角的正弦值sin |cosa,|,cos .答案:a2已知长方体abcda1b1c1d1的底面abcd是边长为4的正方形,长方体的高为aa13,则bc1与对角面bb1d1d夹角的正弦值等于()a. b.c. d.解析:建立如图所示的空间直角坐标系,底面是边长为4的正方形,aa13,a1(4,0,0),b(4,4,3),c1(0,4,0)而面bb1d1d的法向量为(4,4,0),bc1与对角面bb1d1d所成角的正弦值即为|cos,|.答案:c3.如图所示,点p是abc所在平面外的一点,若pa、pb、pc与平面的夹角均相等,则点p在平面上的投影p是abc的()a内心 b外心c重心 d垂心解析:由于pa,pb,pc与平面的夹角均相等,所以这三条由点p出发的平面abc的斜线段相等,故它们在平面abc内的投影pa,pb,pc也都相等,故点p是abc的外心答案:b4如果一个正方体的十二条棱所在的直线与一个平面的夹角都相等,记作,那么sin 的值为()a. b.c. d1解析:由于两条平行直线和同一平面的夹角相等,则在正方体abcda1b1c1d1中,平面a1bc1满足和十二条棱所在的直线夹角相等,如图建立空间直角坐标系,设正方体的棱长为1,则可得(1,1,0),(0,1,1)平面ba1c1的一个法向量n(1,1,1)又(0,0,1)则sin|cos,n|.答案:b5正方体abcda1b1c1d1中,直线bc1与平面a1bd夹角的正弦值是_解析:如图,以da、dc、dd1分别为x轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为1,则a(1,0,0),b(1,1,0),c1(0,1,1),易证是平面a1bd的一个法向量(1,1,1),(1,0,1)cos,.所以bc1与平面a1bd夹角的正弦值为.答案:6.如图所示,已知正三棱柱abca1b1c1的所有棱长都相等,d是a1c1的中点,则直线ad与平面b1dc夹角的正弦值为_解析:不妨设正三棱柱abca1b1c1的棱长为2,建立如图所示的空间直角坐标系,则c(0,0,0),a(,1,0),b1(,1,2),d,则(,2),(,1,2),设平面b1dc的法向量为n(x,y,1),由解得n(,1,1)又,sin |cos,n|.答案:7如图,在正三棱柱abca1b1c1中,abaa1,点d是a1b1的中点求直线ad和平面abc1夹角的正弦值解:如图所示,设o是ac的中点,以o为原点建立空间直角坐标系不妨设aa1,则ab2,相关各点的坐标分别是a(0,1,0),b(,0,0),c1(0,1,),d.易知(,1,0),(0,2,),.设平面abc1的一个法向量为n(x,y,z),则有解得xy,zy.故可取n(1,)所以cosn,.即直线ad和平面abc1夹角的正弦值为.8.如图,在三棱锥pabc中,pa底面abc,paab,abc60,bca90,点d在棱pb上(1)求证:bc平面pac;(2)当d为pb的中点时,求ad与平面pac夹角的余弦值解:如图,以a为原点建立空间直角坐标系,设paa,由已知可得a(0,0,0),b,c,p(0,0,a)(1)证明:(0,0,a),(a,0,0),0,bcap.又bca90,bcac,bc平面pac.(2)d为pb的中点,d,又由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论