


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
放缩法在数列不等式证明中的运用高考中利用放缩方法证明不等式,文科涉及较少,但理科却常常出现,且多是在压轴题中出现。放缩法证明不等式有法可依,但具体到题,又常常没有定法,它综合性强,形式复杂,运算要求高,往往能考查考生思维的严密性,深刻性以及提取和处理信息的能力,较好地体现高考的甄别功能。本文旨在归纳几种常见的放缩法证明不等式的方法,以冀起到举一反三,抛砖引玉的作用。一、 放缩后转化为等比数列。例1. 满足:(1) 用数学归纳法证明:(2) ,求证:解:(1)略(2) 又 , 迭乘得: 点评:把握“”这一特征对“”进行变形,然后去掉一个正项,这是不等式证明放缩的常用手法。这道题如果放缩后裂项或者用数学归纳法,似乎是不可能的,为什么?值得体味!二、放缩后裂项迭加例2数列,其前项和为求证:解:令,的前项和为当时, 点评:本题是放缩后迭加。放缩的方法是加上或减去一个常数,也是常用的放缩手法。值得注意的是若从第二项开始放大,得不到证题结论,前三项不变,从第四项开始放大,命题才得证,这就需要尝试和创新的精神。例3.已知函数的图象在处的切线方程为(1)用表示出(2)若在上恒成立,求的取值范围(3)证明:解:(1)(2)略(3)由(ii)知:当令且当令即将上述n个不等式依次相加得整理得点评:本题是2010湖北高考理科第21题。近年,以函数为背景建立一个不等关系,然后对变量进行代换、变形,形成裂项迭加的样式,证明不等式,这是一种趋势,应特别关注。当然,此题还可考虑用数学归纳法,但仍需用第二问的结论。三、 放缩后迭乘例4.(1) 求(2) 令,求数列的通项公式(3) 已知,求证: 解:(1)(2)略 由(2)得 点评:裂项迭加,是项项相互抵消,而迭乘是项项约分,其原理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025医学前列腺增生治疗考试题目及答案
- 9.2 阿基米德原理(说课稿)2024-2025学年沪粤版物理八年级下册
- 2025医学超声检查技术应用考试题目及答案
- 2025成人生物植物生理学应用考试题目及答案
- 2025至2030新生儿护理产品行业市场深度研究及发展前景投资可行性分析报告
- 殡仪馆消防培训课件
- 2025至2030幻灯及投影设备市场行业市场深度研究及发展前景投资可行性分析报告
- 2024-2025学年学年九年级化学上册 第七章 化学反应与化学方程式 第三节 依据化学方程式的简单计算说课稿 (新版)北京课改版
- 车上旅客安全知识培训课件
- 心理健康教育工作总结修改
- 边境守护者2025边境口岸通关便利化措施研究
- 卷扬工安全知识培训内容课件
- 2025年度泸州老窖白酒线上线下全渠道销售代理协议
- 教职工开学安全知识培训课件
- 2025至2030年中国焦炉气制LNG市场竞争格局及行业投资前景预测报告
- 探针卡基础知识培训课件
- 《机械基础(第二版)》中职全套教学课件
- JJF1033-2023计量标准考核规范
- 微观经济学-范里安varian中级
- 《印章移交登记表》
- 电缆护套感应电压计算
评论
0/150
提交评论