2015必修二第三章 直线与方程系作业题及答案解析11套第3章 3.2.1.doc_第1页
2015必修二第三章 直线与方程系作业题及答案解析11套第3章 3.2.1.doc_第2页
2015必修二第三章 直线与方程系作业题及答案解析11套第3章 3.2.1.doc_第3页
2015必修二第三章 直线与方程系作业题及答案解析11套第3章 3.2.1.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.2直线的方程3.2.1直线的点斜式方程【课时目标】1掌握坐标平面内确定一条直线的几何要素2会求直线的点斜式方程与斜截式方程3了解斜截式与一次函数的关系1直线的点斜式方程和斜截式方程名称已知条件示意图方程使用范围点斜式点P(x0,y0)和斜率k_斜率存在斜截式斜率k和在y轴上的截距b_存在斜率2对于直线l1:yk1xb1,l2:yk2xb2,(1)l1l2_;(2)l1l2_一、选择题1方程yk(x2)表示()A通过点(2,0)的所有直线B通过点(2,0)的所有直线C通过点(2,0)且不垂直于x轴的所有直线D通过点(2,0)且除去x轴的所有直线2已知直线的倾斜角为60,在y轴上的截距为2,则此直线方程为()Ayx2 Byx2Cyx2 Dyx23直线ykxb通过第一、三、四象限,则有()Ak0,b0 Bk0,b0Ck0 Dk0,b04直线yaxb和ybxa在同一坐标系中的图形可能是()5集合A直线的斜截式方程,B一次函数的解析式,则集合A、B间的关系是()AAB BBACAB D以上都不对6直线kxy13k0当k变化时,所有的直线恒过定点()A(1,3) B(1,3)C(3,1) D(3,1)二、填空题7将直线y3x绕原点逆时针旋转90,再向右平移1个单位长度,所得到的直线为_8已知一条直线经过点P(1,2)且与直线y2x3平行,则该直线的点斜式方程是_9下列四个结论:方程k与方程y2k(x1)可表示同一直线;直线l过点P(x1,y1),倾斜角为90,则其方程是xx1;直线l过点P(x1,y1),斜率为0,则其方程是yy1;所有的直线都有点斜式和斜截式方程正确的为_(填序号)三、解答题10写出下列直线的点斜式方程(1)经过点A(2,5),且与直线y2x7平行;(2)经过点C(1,1),且与x轴平行11已知ABC的三个顶点坐标分别是A(5,0),B(3,3),C(0,2),求BC边上的高所在的直线方程能力提升12已知直线l的斜率为,且和两坐标轴围成三角形的面积为3,求l的方程13等腰ABC的顶点A(1,2),AC的斜率为,点B(3,2),求直线AC、BC及A的平分线所在直线方程1已知直线l经过的一个点和直线斜率就可用点斜式写出直线的方程用点斜式求直线方程时,必须保证该直线斜率存在而过点P(x0,y0),斜率不存在的直线方程为xx0直线的斜截式方程ykxb是点斜式的特例2求直线方程时常常使用待定系数法,即根据直线满足的一个条件,设出其点斜式方程或斜截式方程,再根据另一条件确定待定常数的值,从而达到求出直线方程的目的但在求解时仍然需要讨论斜率不存在的情形32直线的方程321直线的点斜式方程答案知识梳理1yy0k(xx0)ykxb2(1)k1k2且b1b2(2)k1k21作业设计1C易验证直线通过点(2,0),又直线斜率存在,故直线不垂直于x轴2D直线的倾斜角为60,则其斜率为,利用斜截式直接写方程3B4D5B一次函数ykxb(k0);直线的斜截式方程ykxb中k可以是0,所以BA6C直线kxy13k0变形为y1k(x3),由直线的点斜式可得直线恒过定点(3,1)7yx解析直线y3x绕原点逆时针旋转90所得到的直线方程为yx,再将该直线向右平移1个单位得到的直线方程为y(x1),即yx8y22(x1)910解(1)由题意知,直线的斜率为2,所以其点斜式方程为y52(x2)(2)由题意知,直线的斜率ktan 00,所以直线的点斜式方程为y(1)0,即y111解设BC边上的高为AD,则BCAD,kADkBC1,kAD1,解得kADBC边上的高所在的直线方程为y0(x5),即yx312解设直线l的方程为yxb,则x0时,yb;y0时,x6b由已知可得|b|6b|3,即6|b|26,b1故所求直线方程为yx1或yx113解直线AC的方程:yx2ABx轴,AC的倾斜角为60,BC的倾斜角为30或120当30时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论