




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.5.Example Simulation of a Piezoelectric Actuated Micro-Pump (ansys的帮助里面的例子)Problem Description The working principle of micro-pumps is the actuation of a flexible membrane to obtain the driving pressure for the fluid flow. Electro-thermal, electrostatic, or piezoelectric actuators are most commonly used for this purpose. The benchmark problem is taken from A. Klein and demonstrated in Figure4.6:Piezoelectric Micropump Description. This device consists of a fluid chamber with a deformable membrane at the top. The membrane is actuated by a piezoelectric layer during pump operation. To estimate the fluid damping and inertial forces on the membrane, a simplified process of the membrane actuation is considered here. With the diaphragm in the neutral position and the chamber filled with the working fluid, the PZT layer is actuated at t = 0 with an electric field, which is maintained at a constant level subsequently. Figure4.6:Piezoelectric Micropump Description ANSYS coupled field element SOLID5 with displacement and voltage DOFs is used for the piezoelectric material and SOLID95 is used for the silicon membrane. Air at 25 degrees Celsius is used as the working fluid for the CFX solver. The following material properties were used for the silicon: Youngs Modulus: 1.689e11 Pa Poissons ratio: 0.3 Density: 2329 kg/m3 The following material properties were used for the piezoelectric material (PZT4): Density: 7500 kg/m3 X and Z Permittivity: 804.6 (Polar axis along Y axis) Y Permittivity: 659.7 The elasticity stiffness matrix is shown here (N/m2 units): The piezoelectric stress matrix is shown here (C/m2 units): Figure4.7:Model Dimensions This model has a 0.1 mm thickness in the z direction, and both side surfaces have a Uz = 0 boundary condition for the structural part, and a symmetry condition for the fluid part. Figure4.8:Model Boundary Conditions Back To Top Set Up the Piezoelectric and Fluid Inputs The first step in this example is to create two ANSYS .cdb files, one to set up the piezoelectric analysis and one to set up the fluid analysis. These files will be imported into the MFX solver. You will create these files with two batch ANSYS runs using the input files piezo.inp and CFX_fluid.inp, respectively. This example provides the models (under /ansys_inc/v121/ansys/data/models); you must be familiar with setting up a piezoelectric analysis and familiar with creating a CFX fluid mesh. You will then set up the CFX model in CFX-Pre and create the CFX definition file. Finally, step by step instructions are provided for interactively setting the MFX input and creating the MFX input file. This will then be executed through the MFX launcher. It is important that you enter all names exactly as shown in this example, including spaces and underscores. ANSYS and CFX use these names in their communication during the solution. To create the two ANSYS .cdb files, follow the steps below: 1. Open the Mechanical APDL Product Launcher. Windows: Choose menu path Start Programs ANSYS 12.1 Mechanical APDL Product Launcher. UNIX: Type launcher121. 2. Select the Simulation Environment ANSYS Batch. 3. Select a multiphysics license. 4. The File Management tab is activated by default. In the File Management tab: Enter the working directory where the piezo.inp and CFXfluid.inp files are located. You can type this directory in or select it via browsing. Enter a unique jobname. Enter piezo.inp for the input file. Enter piezo.out for the output file. 5. Click Run. This input file will create the pfsi-solid.cdb file to be used later. Repeat this process for the CFXfluid.inp file, using CFXfluid.inp as the input file name, and CFXfluid.out as the output file name. This input file will create the fluid.cdb file that will be used later. Back To Top Set up the CFX Model and Create the CFX Definition File In this series of steps, you will set up the example in the CFX preprocessor. 1. Start CFXpre from the CFX launcher. 2. Create a new simulation and name it cfx_mfxexample. 3. Load the mesh from the ANSYS file named fluid.cdb. The mesh format is ANSYS. Accept the default unit of meters for the model. 4. Define the simulation type: 1. Set External Solver Coupling to ANSYS MultiField via Prep7. 2. Load the ANSYS input file at ANSYS Input File to launch the MFX run from the CFX Solver Manager. 3. Set Option to Transient. 4. Set Time duration to Coupling Time Duration. 5. Set Time steps to Coupling Timesteps. 6. Set Initial time - Option to Automatic with Value, and set Time to 0 s. 5. Create the fluid domain and accept the default domain name. Use Primitive 3D as the location. 6. Edit the fluid domain using the Edit domain - Domain1 panel. 1. Set Fluids list to Air at 25 C. 2. Set Mesh deformation - Option to Regions of motion specified. Accept the default value of mesh stiffness. 3. In the Fluid models tab, set Turbulence model - Option to None (laminar). 4. Accept the remainder of the defaults. 5. Initialize the model in the Initialisation tab. Click Domain Initialisation, and then click Initial Conditions. Select Automatic with value and set velocities and static pressure to zero. 7. Create the interface boundary condition. This is not a domain interface. Set Name to Interface1. 1. In the Basic settings tab: - Set Boundary type to Wall. Set Location to FSI. 2. In the Mesh motion tab: Set Mesh motion - Option to ANSYS Multifield. 3. Accept the defaults for boundary details. 8. Create the opening boundary condition. Set Name to Opening. 1. In the Basic settings tab: Set Boundary type to Opening. Set Location to Opening. 2. In the Boundary details tab: Set Mass and momentum - Option to Static pres. (Entrain). Set Relative pressure to 0 Pa. 3. In the Mesh motion tab: Accept the Mesh motion - Option default of Stationary. 9. Create the wall boundary condition. Set Name to Bottom. Edit the wall boundary condition using Edit boundary: Bottom in Domain: Domain1 panel. 1. In the Basic settings tab: Set Boundary type to Wall. Set Location to Bottom. 2. In the Boundary Details tab: Set Wall influence on flow - Option to No slip. 3. In the Mesh motion tab: Set Mesh motion to Stationary. 10. Create another wall boundary condition. Set Name to Top. Edit the wall boundary condition using Edit boundary: Top in Domain: Domain1 panel. 1. In the Basic settings tab: Set Boundary type to Wall. Set Location to Top. 2. In the Boundary Details tab: Set Wall influence on flow - Option to No slip. 3. In the Mesh motion tab: Set Mesh motion to Stationary. 11. Create the end symmetry boundary condition. Set Name to Sym. 1. In the Basic settings tab: Set Boundary Type to Symmetry. Set Location to Pipe. 2. In the Mesh motion tab: Set Mesh motion to Unspecified. 12. Create the side symmetry boundary condition. Set Name to Symmetry. Edit the symmetry boundary condition using Edit boundary: Side1 in Domain: Domain1 panel. 1. In the Basic settings tab: Set Boundary type to Symmetry. Set Location to Side1 and Side2. Use the Ctrl key to select multiple locations. 2. In the Mesh motion tab: Set Mesh motion to Unspecified. 13. Accept the defaults for Solver Control. 14. Generate transient results to enable post processing through the simulation period. 1. Click Output Control. 2. Go to Trn Results tab. 3. Create New. Accept Transient Results as the default name. 4. Choose Time Interval and set to 5E-5. 5. Accept the remaining defaults. 15. Create the CFX definition file. 1. Choose menu path File Write Solver File. Name the file cfx_mfxexample.def. 2. Select Operation: Write Solver File. 3. Click Quit CFX Pre. 4. Click OK. Back To Top Set Up the MFX Launcher Controls Follow the steps below to set up the MFX controls in ANSYS. The first step reads in the pfsi-solid.cdb input file, which includes the preliminary model and preprocessing information. 1. Open the Mechanical APDL Product Launcher. Windows: Choose menu path: Start Programs ANSYS 12.1 Mechanical APDL Product Launcher UNIX: Type launcher121. 2. Select an ANSYS Multiphysics license. 3. Set your working directory or any other settings as necessary. See The Mechanical APDL Product Launcher in the Operations Guide for details on using the Mechanical APDL Product Launcher. 4. Click Run. 5. When ANSYS has opened, choose menu path Utility Menu File Read Input From and navigate to the file pfsi-solid.cdb. Click OK. 6. Choose menu path Main Menu Solution Multi-field Set Up Select Method. 7. For the MFS/MFX Activation Key, click ON. 8. Click OK. 9. Click MFX-ANSYS/CFX and click OK. Back To Top Set Up the MFX Groups in ANSYS 1. Choose menu path Main Menu Multi-field Set Up MFX-ANSYS/CFX Solution Ctrl. 2. Select Sequential. Enter .5 for the relaxation value and click OK. 3. On the next dialog box, for Select Order, choose Solve ANSYS First and click OK. Back To Top Set Up the MFX Time Controls and Load Transfer in ANSYS 1. Choose menu path Main Menu Multi-field Set Up MFX-ANSYS/CFX Load Transfer. 2. Enter Interface1 for the CFX Region Name. 3. For Load Type, accept the default of Mechanical. 4. Click OK. 5. Choose menu path Main Menu Multi-field Set Up MFX-ANSYS/CFX Time Ctrl. 6. Set MFX End Time to 5e-4. 7. Set Initial Time Step to 5e-6. 8. Set Minimum Time Step to 5e-6. 9. Set Maximum Time Step to 5e-6. 10. Accept the remaining defaults and click OK. Back To Top Set Up MFX Advanced Options in ANSYS 1. Choose menu path Main Menu Multi-field Set Up MFX-ANSYS/CFX Advanced Set Up Iterations. 2. Note the defaults and click OK. 3. Choose menu path Main Menu Multi-field Set Up MFX-ANSYS/CFX Advanced Set Up Convergence. 4. Select All and click OK. 5. On the next dialog box, accept the default of 1.0e-3 for Convergence for All Items and click OK. 6. In the Command Input window, type MFOUTPUT,1 to write the output for every time step. 7. In the Command Input window, type KBC,1 to specify stepped loading. 8. Choose menu path Main Menu Multi-field Set Up MFX-ANSYS/CFX Write input. Name the file mfxexample.dat. 9. Exit ANSYS. Back To Top Run the Example from the ANSYS Launcher 1. Open the Mechanical APDL Product Launcher. 2. Select MFX -
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025河北邯郸市中煤水文局集团有限公司社会化招聘13人笔试参考题库附带答案详解
- 2025春季福建省港口集团有限责任公司校园招聘219人笔试参考题库附带答案详解
- 卸船机班安全培训制度课件
- 2025年枣庄市重点产业链急需紧缺人才需求(900人)笔试参考题库附带答案详解
- 2025年山东土地资本投资集团有限公司春季社会招聘(10人)笔试参考题库附带答案详解
- 2025年国网河北省电力有限公司高校毕业生招聘(第二批)笔试参考题库附带答案详解
- 2025年合肥市产业投资控股(集团)有限公司校园招聘31人笔试参考题库附带答案详解
- 2025山东济南翠河玫瑰制品有限责任公司招聘7人笔试参考题库附带答案详解
- 2025四川长虹美菱国际区品牌运营中心招聘产品策划岗位4人笔试参考题库附带答案详解
- 2025内蒙古京海煤矸石发电有限责任公司招聘笔试参考题库附带答案详解
- 代加工协议合同范本
- 转基因玉米培训课件
- 3.2《学习成就梦想》教案 -2025-2026学年统编版道德与法治七年级上册
- 造血干细胞移植并发症
- 2025年GCP制度培训测试题(附答案)
- 冷库维保合同(2025版)
- 2025国核示范电站有限责任公司校园招聘笔试历年参考题库附带答案详解
- 2025年护士资格证考试试题(附答案)
- 医院实验室生物安全管理体系文件
- 生活垃圾清运工安全教育培训手册
- 普通诊所污水、污物、粪便处理方案及周边环境情况说明
评论
0/150
提交评论