




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
反比例函数的图像和性质(1)教学内容解析:反比例函数的图象和性质,蕴含着丰富的数学思想首先,反比例函数图象和性质,本身就是“数”与“形”的统一体通过对图象的研究和分析,可以确定函数本身的性质,体现了数形结合的思想方法其次,从本节课知识的形成过程来看,由“解析式(确定自变量取值范围)”到“作图(列表、描点、连线)”,再到“性质(观察图象探究性质)”,充分体现了由“数”到“形”,再由“形”到“数”的转化过程,这种函数解析式及性质与函数图象之间的联系,突出体现了两者间的转化对分析解决问题的特殊作用,是转化思想的具体应用再次,将函数中变量、之间的对应关系,通过图象的形状、变化趋势,借助平面直角坐 标系和点的坐标,直观地予以呈现,这又充分体现了变化与对应的数学思想对于反比例函数图象及性质的研究与学习,尽管还处于函数学习的初级阶段,但它所体现的函数学习的一般规律和方法,是继一次函数学习之后的再一次强化用描点法画反比例函数的图象时,先由函数解析式考虑自变量的取值范围,分析、的对应变化关系,然后构思函数图象的大致位置、轮廓、趋势,进而列表、描点、连线作出函数图象,反映了作函数图象的一般规律此外,反比例函数图象和性质的学习,是继一次函数后,知识与方法上的一次拓展,理解与认识上的一次升华,也是思维上的一次飞跃图象由由“一条”到“两支”,形态由“直”到“曲”,由“连续”到“间断”,由与坐标轴“相交”到“渐近”,无不折射出对函数概念本质属性认识的进一步深化教学重点:反比例函数的图象和性质教学目标:1会画反比例函数图象,理解反比例函数的图象和性质2感悟“数形结合”、“变化与对应”和“转化”的数学思想,并能应用数形结合和转化思想根据反比例函数的图象探究其性质3培养学生的观察、分析、探究、归纳及概括能力教学问题分析:对于用描点法画函数的图象,学生已经学过,但因当时处于函数学习的初始阶段,重点只是让学生掌握用描点法画函数图象的“三步曲(列表、描点、连线)”,所以,学生对每步要求的理解并不深刻因此,在画反比例函数图象时,常遇到如下的问题:(1)“列表”时确定自变量的取值缺乏代表性及忽略等现象;(2)“连线”时,由于一次函数图象是一条直线,容易使学生产生知识上的负迁移,把双曲线画成折线;(3)对双曲线与轴、轴“越来越靠近”但不相交的趋势不易理解教学时,应注意有针对性的引导,注意从解析式的分析入手,让学生先进行“数”(,,)、“式”(解析式中、的反比例关系)的分析,进而过渡到对“形”(图象)的认识在学习一次函数的时候,学生已经历过观察、分析图象的特征,抽象、概括函数性质的过程,对研究函数性质所用的探究方法也有一定的了解,但由于反比例函数图象比一函数图象的形态丰富,结构复杂,对性质的深刻理解和掌握及在性质探究中的数学思想的体会和运用,还存在一定的困难教学中,应注重强调说明由“数”到“形”、由“形”到“数”的转化关系,以“数”与“形”的转化为途径,展开探究活动教学难点:准确画出反比例函数的图象,理解反比例函数的性质,并能灵活应用教学条件分析:根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板软件为平台,绘制反比例函数图象,同时辅之以“点跟踪”等手段,通过动态的演示,观察相关数值的变化,研究图象的变化趋势,抽象概括当自变量变化时,对应的函数值的变化规律,进而探究反比例函数的性质教学过程设计:(一)创设情境,引入新知问题1:我们已经学习了正比例函数的哪些内容?是如何研究的?以正比例函数为例师生活动:教师提问,学生思考、回答,教师根据学生回答的情况加以补充,并将答案填写在黑板的表格中,强调是从形状、位置、变化趋势三个方面去研究(二)观察探究,形成新知问题2:反比例函数的图象是什么样的?以画出反比例函数的图象为例,教师引导学生经历列表、描点、连线的过程(1)列表:-6-5-4-3-2-1123456列表时,关注学生是否注意到自变量的取值应使函数有意义(即),同时,所取的点既要使自变量的取值有一定的代表性,又不至于使自变量或对应的函数值太大或是太小,以便于描点和全面反映图象的特征;(2)描点:一般情况下,所选的点越多图象越精确;(3)连线:引导学生用平滑的曲线,按照自变量从小到大的顺序连接各点,注意图象末端的延伸和延伸的趋势,得到反比例函数的图象师生活动:教师引导学生列表、描点、作图;展示学生作品;教师板书示范,并通过课件演示反比例函数图象的生成过程,给出双曲线的名称,并渗透它的形态特征.问题3:请观察反比例函数的图象,有哪些特征?师生活动:教师引导学生观察,类比正比例函数,归纳说出反比例函数图象的形状、位置、变化趋势及其函数的增减性问题4:是不是所有的反比例函数的图象都具有这样的特征呢?以讨论反比例函数为例在教师引导下,学生借鉴画反比例函数的图象的经验,自主画出反比例函数的图象,教师巡视指导作图完成后,学生展示作品,并说出该函数图象的特征,教师适时点评问题5:反比例函数与的图象有什么共同特征?有什么不同点?是由什么决定的?师生活动:教师启发学生对比、思考,组织学生讨论,引导学生关注反比例系数“”的作用问题6:当取不同的值,上述结论是否适用于所有的反比例函数?教师演示课件,赋予不同的值,观察所得到的不同的反比例函数图象的特征,引导学生归纳“变化中的规律性”然后,从解析式的角度,引导学生分析上述结论的合理性问题7:总结反比例函数()图象的特征和性质教师帮助学生梳理、归纳,填写表格:函数图象形状图象位置图象变化趋势函数增减性(三)巩固提高,应用新知课堂练习: 1下列图象中,可以是反比例函数的图象的是( )2已知反比例函数的图象如图所示,则 0, 且在图象的每一支上,值随的增大而 3. 已知反比例函数的图象过点(2,1),则它的图象在 象限,且 04. 若反比例函数()的图象上有两点(,),(,),且,则的值是( )(A)正数(B)负数(C)非正数(D)非负数(四)归纳反思,深化新知问题8:通过本节课的学习,你有哪些收获?学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法布置作业:(1)基础达标:教材中练习的第1、2题,习题17.1的第3题;(2)反思提升:将反比例函数(为常数,)与正比例函数(为常数,)进行对比,可以从如下方面考虑:两种函数的解析式有何相同与不同?两种函数的图象的特征有何区别?在常数相同的情况下,当自变量变化时,两种函数的函数值的变化趋势有什么区别?两种函数中的取值范围有何不同?常数的符号改变对两种函数图象所处象限的影响如何?目标检测:1反比例函数的图象在( )(A)第一、二象限(B)第一、三象限(C)第二、三象限(D)第二、四象限2在同一直角坐标系中,函数与的图象大致是( )3写出一个反比例函数,使得该反比例函数的图象在第一、三象限,该函数可以是 ;若点在该函数的图象上,则点的坐标可以是 (分别写出一个即可)4若双曲线,当时,随的增大而增大,则的取值范围是 5已知反比例函数,(1)填写表格中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 神经科病人的饮食护理
- 公司级安全教育培训心得课件
- 房地产年度汇报
- 《荷叶母亲》说课件课
- 鞋厂跟单工作总结
- 了不起的轮子课件
- 辅导教师学期工作总结
- 乳酸酚棉蓝染色课件
- 《罗斯福集邮》课件
- 服装店设计汇报
- 天然气网络安全知识培训课件
- 肥胖患者体重管理护理查房
- 2025年事业单位工勤技能-湖南-湖南政务服务办事员三级(高级工)历年参考题库含答案解析(5卷套题【单选100题】)
- 【课件】+圆与圆的位置关系+课件-2025-2026学年高二上学期数学人教A版选择性必修第一册
- 医院煎药管理办法
- 人防标识标牌落实方案(3篇)
- 2025年音乐新课标试题及答案
- 钢琴入门知识课件
- 黑龙江省合格考数学试卷
- 城市更新专项规划服务方案投标文件(技术方案)
- 中心静脉导管维护的安全护理
评论
0/150
提交评论