学案.3立方根(学案).doc_第1页
学案.3立方根(学案).doc_第2页
学案.3立方根(学案).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.3 立方根一、教学目标:1、了解立方根和开立方的概念,掌握立方根的性质。2、会用根号表示一个数的立方根。3、能用开立方运算求数的立方根,体会立方与开立方运算的互逆性。4、体会立方根与平方根的区别与联系。二、学习过程:(一)知识点回顾1、平方根的概念:如果一个数的 等于,这个数就叫做的平方根,也叫做的二次方根。记做 。2、开平方的概念:求一个数的 的运算,叫做开平方。3、平方根的性质:一个正数有 个平方根,它们 ;负数有 个平方根;零的平方根是 。(二)探究新知(类比、探究)情境引入:要做一个体积为8cm3的立方体魔方,它的棱要取多少长?你是怎么知道的?解:设棱长为Xcm,则可列方程: ,( )3=8,X= 。1、立方根的概念:如果一个数的 等于,这个数就叫做的立方根,也叫做的三次方根。记做 。2、开立方的概念:求一个数的 的运算,叫做开立方。做一做:(1)3的立方等于多少?是否还有其他的数,它的立方也是27?(2)-3的立方等于多少?是否还有其他的数,它的立方也是-27?(3)0的立方呢?27,-27,0的立方根各有几个?分别是多少?议一议:(1)一个正数有几个立方根?是正是负?为什么?(2)是否任何负数都有立方根?如有,有几个?是正是负?(3)0的立方根是什么?3、立方根的性质:一个正数有 个 的立方根;一个负数有 个 的立方根;零的立方根是 。(三)例题讲解例1、求下列各数的立方根:(1)27; (2); (3); (4); (5)0 解:(1) ( )3=27, 27的立方根是 ,即 (2)(3)(4)(5)练习1、求下列各数的立方根:1, 512, , , -1, , 0.512, 解:例2、求下例各式的值: (1) ; (2)解:练习2、求下列各式的值:, , , , , , , 解:(四)抢答竞赛:1、 判断正误:(1)-4没有立方根。 ( )(2)1的立方根是1. ( ) (3) 的立方根是 ( ) (4)64的立方根是 4 ( )(5)64的算术平方根是8 ( )2、口算: (1)1的立方根是 (2)的立方根是 (3)的立方根是 (4) (5) (6) (五)挑战自我问题:表示a的立方根,那么

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论