18.1.1平行四边形的性质.doc_第1页
18.1.1平行四边形的性质.doc_第2页
18.1.1平行四边形的性质.doc_第3页
18.1.1平行四边形的性质.doc_第4页
18.1.1平行四边形的性质.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题:18.1.1平行四边形的性质 课时:1课时备课时间: 2017.4.1一、教学内容分析四边形问题转化为三角形来解决的转化思想是本课的难点,教学过程中教师在通过逻辑分析的方法引导学生来突破难点,但是通过课堂实际观察笔者感觉到学生现阶段的思维发展状况与常用思维方法还是稍有差异。二、教学目标知识与技能理解并掌握平行四边形的概念和平行四边形的性质;过程与方法;会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证;情感态度、价值观培养学生发现问题、解决问题的能力及逻辑推理能力。三、学情分析学生在小学已经学习了平行四边形的基础知识,经历了针对图形的探究过程,知晓了平行四边形的边、角关系的结论,那么在此基础上的再次“观察、猜想、实验验证”就失去了其真正的意义,也很难激发学生的学习热情。四、教学策略选择与设计观察、猜想、实验验证。五、教学重点及难点1. 重点:平行四边形的定义,平行四边形的性质,以及性质的应用 2.难点:运用平行四边形的性质进行有关的论证和计算.六、教学流程课堂引入:1我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象? 平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?新授:你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形(2)表示:平行四边形用符号“”来表示如图,在四边形ABCD中,ABDC,ADBC,那么四边形ABCD是平行四边形平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”AB/DC ,AD/BC , 四边形ABCD是平行四边形(判定); 四边形ABCD是平行四边形AB/DC, AD/BC(性质)注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角而三角形对边是指一个角的对边,对角是指一条边的对角(教学时要结合图形,让学生认识清楚)【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致? (1)由定义知道,平行四边形的对边平行根据平行线的性质可知,在平行四边形中,相邻的角互为补角(相邻的角指四边形中有一条公共边的两个角注意和第一章的邻角相区别教学时结合图形使学生分辨清楚)(2)猜想 平行四边形的对边相等、对角相等下面证明这个结论的正确性已知:如图 ABCD,求证:ABCD,CBAD,BD,BADBCD分析:作 ABCD的对角线AC,它将平行四边形分成ABC和CDA,证明这两个三角形全等即可得到结论(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题) 证明:连接AC, ABCD,ADBC, 13,24又 ACCA, ABCCDA (ASA) ABCD,CBAD,BD又 1423, BADBCD由此得到:平行四边形性质1平行四边形的对边相等平行四边形性质2 平行四边形的对角相等例习题分析例1(教材P42例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE分析:要证AF=CE,需证ADFCBE,由于四边形ABCD是平行四边形,因此有D=B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF由“边角边”可得出所需要的结论证明略完成课本P42-43的内容学习两条平行线之间的距离: 两条平行线中,一条直线上任意一点到另一条直线的距离。随堂练习1填空:(1)在平行四边形 ABCD中,A= ,则B= 度,C= 度,D= 度(2)如果平行四边形 ABCD中,AB=240,则A= 度,B= 度,C= 度,D= 度 (3)如果 平行四边形ABCD的周长为28cm,且AB:BC=25,那么AB= cm,BC= cm,CD= cm,CD= cm课堂小结本节课我们学习了哪些内容?课后练习1课本练习及习题;2在 ABCD中,如果EFAD,GHCD,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论