




已阅读5页,还剩48页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 自然数的相关性质李宏坤一、知识要点 1、 1、 最大公约数 定义1如果a1,a2,an和d都是正整数,且da1,da2, dan ,那么d叫做a1,a2,an的公约数。公约数中最大的叫做a1,a2,an的最大公约数,记作(a1,a2,an). 如对于4、8、12这一组数,显然1、2、4都是它们的公约数,但4是这些公约数中最大的,所以4是它们的最大公约数,记作(4,8,12)=4. 2、 2、 最小公倍数 定义2如果a1,a2,an和m都是正整数,且a1m, a2m, anm,那么m叫做a1,a2,an的公倍数。公倍数中最小的数叫做a1,a2,an的最小公倍数,记作a1,a2,an. 如对于4、8、12这一组数,显然24、48、96都是它们的公倍数,但24是这些公倍数中最小的,所以24是它们的最小公倍数,记作4,8,12=24. 3、 3、 最大公约数和最小公倍数的性质 性质1 若ab,则(a,b)=a. 性质2 若(a,b)=d,且n为正整数,则(na,nb)=nd. 性质3 若na, nb,则 . 性质4 若a=bq+r (0rb), 则(a,b)= (b,r) . 性质4 实质上是求最大公约数的一种方法,这种方法叫做辗转相除法。 性质5若 ba,则a,b=a. 性质6若a,b=m,且n为正整数,则na,nb=nm. 性质7若na, nb,则 . 4、 4、 数的整除性 定义3对于整数a和不为零的整数b,如果存在整数q,使得a=bq 成立,则就称b整除a或a被b整除,记作ba,若ba,我们也称a是b倍数;若b不能整除a,记作ba 5、 5、 数的整除性的性质 性质1 若ab,bc,则ac 性质2 若ca,cb,则c(ab) 性质3 若ba, n为整数,则bna 6、 6、 同余 定义4 设m是大于1的整数,如果整数a,b的差被m整除,我们就说a,b关于模m同余,记作 ab(mod m) 7、 7、 同余的性质 性质1 如果ab(mod m),cd(mod m),那么acbd(mod m),acbd(mod m) 性质2 如果ab(mod m),那么对任意整数k有kakb(mod m) 性质3 如果ab(mod m),那么对任意正整数k有akbk(mod m) 性质4如果ab(mod m),d是a,b的公约数,那么 二、例题精讲 例1 设m和n为大于0的整数,且3m+2n=225. 如果m和n的最大公约数为15,求m+n的值 (第11届“希望杯”初一试题) 解:(1) 因为 (m,n)=15,故可设m=15a,n=15b,且(a,b)=1 因为 3m+2n=225,所以3a+2b=15 因为 a,b是正整数,所以可得a=1,b=6或a=b=3,但(a,b)=1,所以a=1,b=6 而m+n=15(a+b)=15 7=105 评注:1、遇到这类问题常设m=15a,n=15b,且(a,b)=1,这样可把问题转化为两个互质数的求值问题。这是一种常用方法。 2、思考一下,如果将m和n的最大公约数为15,改成m和n的最小公倍数为45,问题如何解决? 例2有若干苹果,两个一堆多一个,3个一堆多一个,4个一堆多一个,5个一堆多一个,6个一堆多一个,问这堆苹果最少有多少个? 分析:将问题转化为最小公倍数来解决。 解设这堆苹果最少有x个,依题意得 由此可见,x-1是2,3,4,5,6的最小公倍数 因为2,3,4,5,6=60,所以x-1=60,即x=61 答:这堆苹果最少有61个。 例3自然数a1,a2,a3,a9,a10的和1001等于,设d为a1,a2,a3,a9,a10的最大公约数,试求d的最大值。 解由于d为a1,a2,a3,a9,a10的最大公约数,所以和a1+a2+a3+a9+a101001能被d整除,即d是10017 11 13的约数。 因为dak,所以akd,k1,2,3,10从而1001a1+a2+a3+a9+a1010d 所以 由d能整除1001得,d仅可能取值1,7,11,13,77,91。 因为1001能写成10个数的和:91+91+91+91+91+91+91+91+91+182 其中每一个数都能被91整除,所以d能达到最大值91 例4 某商场向顾客发放9999张购物券,每张购物券上印有四位数码,从0001到9999号,如果号码的前两位之和等于后前两位之和,则这张购物券为幸运券,如号码0734,因0+7=3+4,所以这个号码的购物券为幸运券。证明:这个商场所发购物券中,所有幸运券的号码之和能被101整除。(第7届初中“祖冲之杯”数学邀请赛试题) 证明:显然,9999的购物券为幸运券,除这张外,若号码为n的购物券为幸运券,则号码为m=9999-n的购物券也为幸运券。由于9999是奇数,所以m,n的奇偶性不同,即mn,由于m+n=9999,相加时不出现进位。就是说,除号码为9999的幸运券外,其余所有的幸运券可两两配对,且每对号码之和为9999,从而可知所有的幸运券的号码之和为9999的倍数。由1019999,所以所有幸运券的号码之和能被101整除。 评注:本题是通过将数两两配对的方法来解决。 例5 在1,2,3,1995这1995个数中,找出所有满足条件的数来:(1995+a)能整除1995 a (第五届华杯赛决赛试题) 分析: 分子、分母都含有a,对a的讨论带来不便,因此可以将 化成 ,这样只有分母中含有a,就容易对a进行讨论。 解 因为(1995+a)能整除1995 a,所以 是整数,从而 是整数 因为1995 1995=32 52 72 192,所以它的因数1995+a可以通过检验的方法定出。注意到1a1995,所以 19951995+a3990 如果1995+a 不被19整除,那么它的值只能是以下两种: 3 52 72=3675,32 5 72=2205 如果1995+a 能被19整除,但不被192整除,那么它的值只能是以下两种: 3 72 19=2793,52 7 19=3325 如果1995+a 能被192整除,那么它的值只能是以下两种: 7 192=252 7,32 192=3249 于是满足条件的a有6个,即从上面6个值中分别减去1995,得到 1680、210、798、1330、532、1254 评注:本题通过对 的适当变形,便于对a的讨论。讨论时通过将1995 1995分解质因数,然后将因数1995+a通过检验的方法定出。这种方法在解决数的整除问题中经常使用。 例6 11+22+33+44+55+66+77+88+99除以3的余数是几?为什么?(第四届华杯赛复赛试题) 解 显然111(mod 3),330(mod 3),660(mod 3),990(mod 3) 又 22=41(mod 3),44141(mod 3),5525(-1)5(-1)(mod 3), 77171(mod 3),88(-1)81(mod 3) 11+22+33+44+55+66+77+88+991+1+0+1-1+0+1+1+041(mod 3) 即所求余数是1 评注:用同余式求余数非常方便。 例7 已知: ,问a除以13,所得余数是几?(第三届华杯赛决赛试题) 分析:将a用十进制表示成 ,1991除以13,所得余数是显然的,主要研究 除以13的余数规律。 解mod 13,103(-3)3=-27-1, 1+104+1081-10+102=910,19912 a =-188,即a除以13,所得余数是8 例8 n是正偶数,a1,a2,an除以n,所得的余数互不相同;b1,b2,bn除以n,所得的余数也互不相同。证明a1+b1,a2+b2,an+bn除以n,所得的余数必有相同的。 证明 n是正偶数,所以n-1为奇数, 不是n的倍数, a1,a2,an除以n,所得的余数互不相同,所以这n个余数恰好是0,1,n-1.从而a1+a2+an0+1+(n-1)= 0(mod n) 同样b1+b2+bn 0(mod n) 但 (a1+b1)+(a2+b2)+(an+bn)= (a1+a2+an)+( b1+b2+bn 0(mod n)所以a1+b1,a2+b2,an+bn除以n,所得的余数必有相同的。 例9 十进制中,44444444的数字和为A,A的数字和为B,B的数字和为C,求C 分析:由于101(mod 9),所以对整数a0,a1,a2,an有 它表明十进制中,一个数与它的各位数字和模9同余。 根据上述结论有 CBA44444444(mod 9).所以只要估计出C的大小,就不难确定C 解:44447 (mod 9),而73(-2)3=-81(mod 9), 所以 4444444474444=731481+17(mod 9), 所以 CBA444444447(mod 9), 另一方面,44444444(105)4444=1022220,所以44444444的位数不多于22220 从而A922220=199980,即A至多是6位数。所以B96=54 在1到53的整数中,数字和最大的是49,所以C4+9=13 在小于13的自然数中,只有7模9同余于7,所以C=7 评注:本题用了十进制中,一个数与它的各位数字和模9同余这个结论。根据这个结论逐步估计出C的小,然后定出C。 三、巩固练习 选择题 1、两个二位数,它们的最大公约数是8,最小公倍数是96,这两个数的和是( ) A、56 B、78 C、84 D、96 2、三角形的三边长a、b、c均为整数,且a、b、c的最小公倍数为60,a、b的最大公约数是4,b、c的最大公约数是3,则a+b+c的最小值是() A、30 B、31 C、32 D、33 3、在自然数1,2,3,100中,能被2整除但不能被3整除的数的个数是( ) A、33 B、34 C、35 D、37 4、任意改变七位数7175624的末四位数字的顺序得到的所有七位数中,能被3整除的数的个数是( ) A、24 B、12 C、6 D、0 5、若正整数a和1995对于模6同余,则a的值可以是( ) A、25 B、26 C、27 D、28 6、设n为自然数,若19n+1410n+3 (mod 83),则n的最小值是( ) A、4 B、8 C、16 D、32 填空题 7、自然数n被3除余2,被4除余3,被5除余4,则n的最小值是 8、满足x,y=6,y,z=15的正整数组(x,y,z)共有 组 9、一个四位数能被9整除,去掉末位数后得到的三位数是4的倍数,则这样的四位数中最大的一个,它的末位数是 10、有一个11位数,从左到右,前k位数能被k整除(k=1,2,3,11),这样的最小11位数是 11、设n为自然数,则3 2 n+8被8除的余数是 12、14+24+34+44+19944+19954的末位数是 解答题 13、求两个自然数,它们的和是667,它们的最小公倍数除以最大公约数所得的商是120。 14、已知两个数的和是40,它们的最大公约数与最小公倍数的和是56,求这两个数。 15、五位数 能被12整除,它的最末两位数字所成的数 能被6整除,求出这个五位数。 16、若a,b,c,d是互不相等的整数,且整数x满足等式(x-a)(x-b)(x-c)(x-d)=9 求证:4(a+b+c+d) 17、一个数是5个2,3个3,2个5,1个7的连乘积,这个数当然有许多约数是两位数,这些两位约数中,最大的是多少? 18、求2400被11除,所得的余数。 19、证明31980+41981被5整除。第二章 平行四边形管红霞平行四边形是一种极重要的几何图形这不仅是因为它是研究更特殊的平行四边形矩形、菱形、正方形的基础,还因为由它的定义知它可以分解为一些全等的三角形,并且包含着有关平行线的许多性质,因此,它在几何图形的研究上有着广泛的应用 由平行四边形的定义决定了它有以下几个基本性质:(1)平行四边形对角相等;(2)平行四边形对边相等;(3)平行四边形对角线互相平分除了定义以外,平行四边形还有以下几种判定方法:(1)两组对角分别相等的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形例1 如图2-32所示在ABCD中,AEBC,CFAD,DN=BM求证:EF与MN互相平分分析 只要证明ENFM是平行四边形即可,由已知,提供的等量要素很多,可从全等三角形下手证 因为ABCD是平行四边形,所以ADBC,ABCD,B=D又AEBC,CFAD,所以AECF是矩形,从而AE=CF所以RtABERtCDF(HL,或AAS),BE=DF又由已知BM=DN,所以BEMDFN(SAS),ME=NF 又因为AF=CE,AM=CN,MAF=NCE,所以MAFNCE(SAS),所以 MF=NF 由,四边形ENFM是平行四边形,从而对角线EF与MN互相平分例2 如图2-33所示RtABC中,BAC=90,ADBC于D,BG平分ABC,EFBC且交AC于F求证:AE=CF分析 AE与CF分处于不同的位置,必须通过添加辅助线使两者发生联系若作GHBC于H,由于BG是ABC的平分线,故AG=GH,易知ABGHBG又连接EH,可证ABEHBE,从而AE=HE这样,将AE“转移”到EH位置设法证明EHCF为平行四边形,问题即可获解证 作GHBC于H,连接EH因为BG是ABH的平分线,GABA,所以GA=GH,从而ABGHBG(AAS),所以 AB=HB 在ABE及HBE中,ABE=CBE,BE=BE,所以 ABEHBE(SAS),所以 AE=EH,BEA=BEH下面证明四边形EHCF是平行四边形因为ADGH,所以AEG=BGH(内错角相等) 又AEG=GEH(因为BEA=BEH,等角的补角相等),AGB=BGH(全等三角形对应角相等),所以AGB=GEH从而EHAC(内错角相等,两直线平行)由已知EFHC,所以EHCF是平行四边形,所以FC=EH=AE说明 本题添加辅助线GHBC的想法是由BG为ABC的平分线的信息萌生的(角平分线上的点到角的两边距离相等),从而构造出全等三角形ABG与HBG继而发现ABEHBE,完成了AE的位置到HE位置的过渡这样,证明EHCF是平行四边形就是顺理成章的了人们在学习中,经过刻苦钻研,形成有用的经验,这对我们探索新的问题是十分有益的例3 如图2-34所示ABCD中,DEAB于E,BM=MC=DC求证:EMC=3BEM 分析 由于EMC是BEM的外角,因此EMC=B+BEM从而,应该有B=2BEM,这个论断在BEM内很难发现,因此,应设法通过添加辅助线的办法,将这两个角转移到新的位置加以解决利用平行四边形及M为BC中点的条件,延长EM与DC延长线交于F,这样B=MCF及BEM=F,因此, 只要证明MCF=2F即可不难发现,EDF为直角三角形(EDF=90)及M为斜边中点,我们的证明可从这里展开证 延长EM交DC的延长线于F,连接DM由于CM=BM,F=BEM,MCF=B,所以MCFMBE(AAS),所以M是EF的中点由于ABCD及DEAB,所以,DEFD,三角形DEF是直角三角形,DM为斜边的中线,由直角三角形斜边中线的性质知F=MDC,又由已知MC=CD,所以MDC=CMD,则MCF=MDC+CMD=2F从而EMC=F+MCF=3F=3BEM例4 如图2-35所示矩形ABCD中,CEBD于E,AF平分BAD交EC延长线于F求证:CA=CF分析 只要证明CAF是等腰三角形,即CAF=CFA即可由于CAF=45-CAD,所以,在添加辅助线时,应设法产生一个与CAD相等的角a,使得CFA=45-a为此,延长DC交AF于H,并设AF与BC交于G,我们不难证明FCH=CAD证 延长DC交AF于H,显然FCH=DCE又在RtBCD中,由于CEBD,故DCE=DBC因为矩形对角线相等,所以DCBCDA,从而DBC=CAD,因此,FCH=CAD 又AG平分BAD=90,所以ABG是等腰直角三角形,从而易证HCG也是等腰直角三角形,所以CHG=45由于CHG是CHF的外角,所以CHG=CFH+FCH=45,所以 CFH=45-FCH 由,CFH=45-CAD=CAF,于是在三角形CAF中,有CA=CF例5 设正方形ABCD的边CD的中点为E,F是CE的中点(图2-36)求证:分析 作BAF的平分线,将角分为1与2相等的两部分,设法证明DAE=1或2证 如图作BAF的平分线AH交DC的延长线于H,则1=2=3,所以FA=FH设正方形边长为a,在RtADF中,从而所以 RtABGRtHCG(AAS),从而RtABGRtADE(SAS),例6 如图2-37所示正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G求证:GHD是等腰三角形分析 准确地画图可启示我们证明GDH=GHD证 因为DEBC,所以四边形BCED为平行四边形,所以1=4又BD=FD,所以所以 BC=GC=CD因此,DCG为等腰三角形,且顶角DCG=45,所以又所以 HDG=GHD,从而GH=GD,即GHD是等腰三角形练习十二1如图2-38所示DEAC,BFAC,DE=BF,ADB=DBC求证:四边形ABCD是平行四边形2如图2-39所示在平行四边形ABCD中,ABE和BCF都是等边三角形求证:DEF是等边三角形3如图2-40所示ABCD中,AF平分BAD交BC于F,DEAF交CB于E求证:BE=CF4如图2-41所示矩形ABCD中,F在CB延长线上,AE=EF,CF=CA求证:BEDE5如图2-42所示在正方形ABCD中,CE垂直于CAB的平分第三章 数学故事徐俐君(1)奇特的墓志铭在大数学家阿基米德的墓碑上,镌刻着一个有趣的几 何图形:一个圆球镶嵌在一个圆柱内。相传,它是阿基米 德生前最为欣赏的一个定理。 在数学家鲁道夫的墓碑上,则镌刻着圆周率的35位 数值。这个数值被叫做。”鲁道夫数”。它是鲁道夫毕生心血 的结晶。大数学家高斯曾经表示,在他去世以后,希望人们在他 的墓碑上刻上一个正17边形。因为他是在完成了正17边形 的尺规作图后,才决定献身于数学研究的 不过,最奇特的墓志铭,却是属于古希腊数学家丢番 图的。他的墓碑上刻着一道谜语般的数学题: “过路人,这座石墓里安葬着丢番图。他生命的16 是幸福的童年,生命的112是青少年时期。又过了生命 的 1 7他才结婚。婚后 5年有了一个孩子,孩子活到他 父亲一半的年纪便死去了。孩子死后,丢番图在深深的悲 哀中又活了4年,也结束了尘世生涯。过路人,你知道丢 番图的年纪吗?” 丢番图的年纪究竟有多大呢? 设他活了X岁,依题意可列出方程。这样,要知道丢番图的年纪,只要解出这个方程就行了。这段墓志铭写得太妙了。谁想知道丢番图的年纪,谁 就得解一个一元一次方程;而这又正好提醒前来瞻仰的人 们,不要忘记了丢番图献身的事业。在丢番图之前,古希腊数学家习惯用几何的观点看待 遇到的所有数学问题,而丢番图则不然,他是古希腊第一 个大代数学家,喜欢用代数的方法来解决问题。现代解方程的基本步骤,如移项、合并同类项、,方程两边乘以同一因子等等,丢番图都已知道了。他尤其擅长解答不定方 程,发明了许多巧妙的方法,被西方数学家誉为这门数学 分支的开山鼻祖。丢番图也是古希腊最后一个大数学家。遗憾的是,关 于他的生平。后人几乎一无所知,既不知道他生于何地, 也不知道他卒于何时。幸亏有了这段奇特的墓志铭,才知 道他曾享有84岁的高龄。 (2)希腊十字架问题图上那只巨大的复活节彩蛋上有一个希腊十字架,从它引发出许多切割问题,下面是其中的三个。(a)将十字架图形分成四块,用它们拼成一个正方形; 有无限多种办法把一个希腊十字架分成四块,再把它们拼成一个正方形,下图给出了其中的一个解法。 奇妙的是,任何两条切割直线,只要与图上的直线分别平行,也可取得同样的结果,分成的四块东西总是能拼出一个正方形。 (b)将十字架图形分成三块,用它们拼成一个菱形;(c)将十字架图形分成三块,用它们拼成一个矩形,要求其 长是宽的两倍。 第四章 分式化简及求值王作荣 分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答本讲主要介绍分式的化简与求值 例1 化简分式:分析 直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多 (2a+1)-(a-3)-(3a+2)+(2a-2) 说明 本题的关键是正确地将假分式写成整式与真分式之和的形式例2 求分式当a=2时的值分析与解 先化简再求值直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),可将分式分步通分,每一步只通分左边两项例3 若abc=1,求分析 本题可将分式通分后,再进行化简求值,但较复杂下面介绍几种简单的解法解法1 因为abc=1,所以a,b,c都不为零 解法2 因为abc=1,所以a0,b0,c0例4 化简分式:分析与解 三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧例5 化简计算(式中a,b,c两两不相等):似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法解说明 本例也是采取“拆项相消”法,所不同的是利用例6 已知:x+y+z=3a(a0,且x,y,z不全相等),求分析 本题字母多,分式复杂若把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a有关,为简化计算,可用换元法求解解 令x-a=u,y-a=v,z-a=w,则分式变为u2+v2+w2+2(uv+vw+wu)=0由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w20,从而有说明 从本例中可以看出,换元法可以减少字母个数,使运算过程简化例7 化简分式:适当变形,化简分式后再计算求值(x-4)2=3,即x2-8x+130原式分子=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10=10,原式分母=(x2-8x+13)+2=2,说明 本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化解法1 利用比例的性质解决分式问题(1)若a+b+c0,由等比定理有所以a+b-c=c,a-b+c=b,-a+b+c=a,于是有(2)若a+b+c=0,则a+b=-c,b+c=-a,c+a=-b,于是有 说明 比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解解法2 设参数法令则a+b=(k+1)c,a+c=(k+1)b,b+c=(k+1)a+有2(a+b+c)=(k+1)(a+b+c),所以 (a+b+c)(k-1)=0,故有k=1或 a+b+c=0当k=1时,当a+b+c=0时,说明 引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用练习四1化简分式:2计算:3已知:(y-z)2+(z-x)2+(x-y)2=(x+y-2z)2+(y+z-2x)2+(z+x-2y)2,的值第五章 有理数的巧算 赵玉香在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单例1 计算:分析 中学数学中,由于负数的引入,符号“+”与“-”具有了双重涵义,它既是表示加法与减法的运算符号,也是表示正数与负数的性质符号因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化注意 在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算例2 计算下式的值:211555+445789+555789+211445分析 直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单本题可将第一、第四项和第二、第三项分别结合起来计算解 原式=(211555+211445)+(445789+555789) =211(555+445)+(445+555)789 =2111000+1000789 =1000(211+789) =1 000 000说明 加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧例3 在数1,2,3,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?分析与解 因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性在1,2,3,1998中有19982个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然n-(n+1)-(n+2)+(n+3)=0这启发我们将1,2,3,1998每连续四个数分为一组,再按上述规则添加符号,即(1-2-3+4)+(5-6-7+8)+(1993-1994-1995+1996)-1997+1998=1所以,所求最小非负数是1说明 本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化第六章 用字母表示数 姜秀云我们先来计算(100+2)(100-2)的值:(100+2)(100-2)=100100-2100+2100-4=1002-22这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过程变为(a+b)(a-b)=a2-ab+ab-b2=a2-b2于是我们得到了一个重要的计算公式(a+b)(a-b)=a2-b2, 这个公式叫平方差公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算例4 计算 30012999的值解 30012999=(3000+1)(3000-1)=30002-12=8 999 999例5 计算 1039710 009的值解 原式=(100+3)(100-3)(10000+9)=(1002-9)(1002+9)=1004-92=99 999 919例6 计算:分析与解 直接计算繁仔细观察,发现分母中涉及到三个连续整数:12 345,12 346,12 347可设字母n=12 346,那么12 345=n-1,12 347=n+1,于是分母变为n2-(n-1)(n+1)应用平方差公式化简得n2-(n2-12)=n2-n2+1=1,即原式分母的值是1,所以原式=24 690例7 计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)分析 式子中2,22,24,每一个数都是前一个数的平方,若在(2+1)前面有一个(2-1),就可以连续递进地运用(a+b)(a-b)=a2-b2了解 原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1) =(22-1)(22+1)(24+1)(28+1)(216+1)(232+1) =(24-1)(24+1)(28+1)(216+1)(232+1)= =(232-1)(232+1) =264-1例8 计算:分析 在前面的例题中,应用过公式(a+b)(a-b)=a2-b2这个公式也可以反着使用,即a2-b2=(a+b)(a-b)本题就是一个例子 通过以上例题可以看到,用字母表示数给我们的计算带来很大的益处下面再看一个例题,从中可以看到用字母表示一个式子,也可使计算简化例9计算:我们用一个字母表示它以简化计算 第七章 观察找规律韩桂芹1 观察算式找规律例10 某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88分析与解 若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算所以总分为9020+(-3)+1+4+(-2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)+2+5+(-2)=1800-1=1799,平均分为 90+(-1)20=89.95例11 计算1+3+5+7+1997+1999的值 分析 观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法解 用字母S表示所求算式,即S=1+3+5+1997+1999 再将S各项倒过来写为S=1999+1997+1995+3+1 将,两式左右分别相加,得2S=(1+1999)+(3+1997)+(1997+3)+(1999+1)=2000+2000+2000+2000(1000个2000)=20001000从而有 S=1000 000说明 一般地,一列数,如果从第二项开始,后项减前项的差都相等(本题3-1=5-3=7-5=1999-1997,都等于2),那么,这列数的求和问题,都可以用上例中的“倒写相加”的方法解决例13 计算 1+5+52+53+599+5100的值分析 观察发现,上式从第二项起,每一项都是它前面一项的5倍如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算解 设S=1+5+52+599+5100, 所以5S=5+52+53+5100+5101 得4S=5101-1,说明 如果一列数,从第二项起每一项与前一项之比都相等(本例中是都等于5),那么这列数的求和问题,均可用上述“错位相减”法来解决例14 计算:分析 一般情况下,分数计算是先通分本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法 解 由于所以说明 本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用练习1计算下列各式的值:(1)-1+3-5+7-9+11-1997+1999;(2)11+12-13-14+15+16-17-18+99+100;(3)19911999-19902000;(4)4726342+472 6352-472 633472 635-472 634472 636; (6)1+4+7+244; 2某小组20名同学的数学测验成绩如下,试计算他们的平均分81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85第八章 归纳与发现曲文忠归纳的方法是认识事物内在联系和规律性的一种重要思考方法,也是数学中发现命题与发现解题思路的一种重要手段这里的归纳指的是常用的经验归纳,也就是在求解数学问题时,首先从简单的特殊情况的观察入手,取得一些局部的经验结果,然后以这些经验作基础,分析概括这些经验的共同特征,从而发现解题的一般途径或新的命题的思考方法下面举几个例题,以见一般 例1 如图2-99,有一个六边形点阵,它的中心是一个点,算作第一层;第二层每边有两个点(相邻两边公用一个点);第三层每边有三个点,这个六边形点阵共有n层,试问第n层有多少个点?这个点阵共有多少个点?分析与解 我们来观察点阵中各层点数的规律,然后归纳出点阵共有的点数第一层有点数:1;第二层有点数:16;第三层有点数:26;第四层有点数:36;第n层有点数:(n-1)6.因此,这个点阵的第n层有点(n-1)6个n层共有点数为例2 在平面上有过同一点P,并且半径相等的n个圆,其中任何两个圆都有两个交点,任何三个圆除P点外无其他公共点,那么试问:(1)这n个圆把平面划分成多少个平面区域?(2)这n个圆共有多少个交点?分析与解 (1)在图2-100中,设以P点为公共点的圆有1,2,3,4,5个(取这n个特定的圆),观察平面被它们所分割成的平面区域有多少个?为此,我们列出表181由表181易知S2-S1=2,S3-S23,S4-S34,S5-S45,由此,不难推测Sn-Sn-1n把上面(n-1)个等式左、右两边分别相加,就得到Sn-S1234n,因为S1=2,所以下面对Sn-Sn-1=n,即Sn=Sn-1n的正确性略作说明因为Sn-1为n-1个圆把平面划分的区域数,当再加上一个圆,即当n个圆过定点P时,这个加上去的圆必与前n-1个圆相交,所以这个圆就被前n-1个圆分成n部分,加在Sn-1上,所以有Sn=Sn-1n(2)与(1)一样,同样用观察、归纳、发现的方法来解决为此,可列出表182由表182容易发现a11,a2-a11,a3-a22,a4-a33,a5-a44,an-1-an-2n-2,an-an-1n-1n个式子相加注意 请读者说明an=an-1(n-1)的正确性例3 设a,b,c表示三角形三边的长,它们都是自然数,其中abc,如果 b=n(n是自然数),试问这样的三角形有多少个?分析与解 我们先来研究一些特殊情况:(1)设b=n=1,这时b=1,因为abc,所以a=1,c可取1,2,3,若c=1,则得到一个三边都为1的等边三角形;若c2,由于ab=2,那么ab不大于第三边c,这时不可能由a,b,c构成三角形,可见,当b=n=1时,满足条件的三角形只有一个(2)设b=n=2,类似地可以列举各种情况如表183这时满足条件的三角形总数为:1+2=3(3)设b=n=3,类似地可得表184这时满足条件的三角形总数为:123=6通过上面这些特例不难发现,当b=n时,满足条件的三角形总数为:这个猜想是正确的因为当b=n时,a可取n个值(1,2,3,n),对应于a的每个值,不妨设a=k(1kn)由于bcab,即ncnk,所以c可能取的值恰好有k个(n,n1,n2,nk-1)所以,当b=n时,满足条件的三角形总数为:例4 设123n缩写为n!(称作n的阶乘),试化简:1!12!23!3n!n. 分析与解 先观察特殊情况:(1)当n=1时,原式=1=(11)!-1;(2)当n=2时,原式=5=(21)!-1;(3)当n=3时,原式=23=(31)!-1;(4)当n=4时,原式=119=(41)!-1由此做出一般归纳猜想:原式=(n+1)!-1. 下面我们证明这个猜想的正确性1+原式=1+(1!12!23!3+n!n)=1!22!23!3+n!n=2!+2!23!3+n!n=2!3+3!3+n!n=3!+3!3+n!n=n!+n!n=(n1)!,所以原式=(n+1)!-1. 例5 设x0,试比较代数式x3和x2+x+2的值的大小分析与解 本题直接观察,不好做出归纳猜想,因此可设x等于某些特殊值,代入两式中做试验比较,或许能启发我们发现解题思路为此,设x=0,显然有x3x2+x+2设x=10,则有x3=1000,x2+x2=112,所以x3x2+x+2设x=100,则有x3x2+x+2观察、比较,两式的条件和结论,可以发现:当x值较小时,x3x2+x+2;当x值较大时,x3x2+x+2那么自然会想到:当x=?时,x3=x2+x+2呢?如果这个方程得解,则它很可能就是本题得解的“临界点”为此,设x3=x2x2,则x3-x2-x-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 光大银行杭州市萧山区2025秋招面试典型题目及参考答案
- 高校教师资格证之《高等教育法规》考前冲刺练习含答案详解(巩固)
- 2025年天津市劳动保障技师学院(天津市劳动保护学校)招聘5人笔试高频难、易错点备考题库及答案详解一套
- 2025安庆职业技术学院传统康复治疗技术期末真题附参考答案详解AB卷
- 2025年海南省环境科学研究院招聘事业编制专业技术人员(一)模拟试卷附答案详解(典型题)
- 河北省石家庄外国语教育集团2023-2024学年九年级上学期语文10月月考试卷(含答案)
- 2025年康复医学治疗技术副高级职称考前冲刺练习题附参考答案详解【B卷】
- 2023年度驾驶员考试通关题库附参考答案详解(突破训练)
- 2024-2025学年公务员(国考)测试卷附参考答案详解(考试直接用)
- 2025施工员模拟题库一套附答案详解
- 肺栓塞考试题及答案
- 2024法考主观题真题及答案
- 综合实践 探索年月日的秘密(教案)北师大版数学三年级上册
- 2025年医师三基考试试题及答案(上半年)
- 《彩虹》课件 部编版语文二年级上册
- 基孔肯雅热主题班会课件
- 2025年全国企业员工全面质量管理知识竞赛试题及答案
- 锁骨下盗血综合征伴锁骨下动脉闭塞的护理查房
- 磷化铝管理办法
- 水下激光探测-洞察及研究
- 2025年海底捞企业面试题及答案
评论
0/150
提交评论