全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
双基限时练(二十一)1若n(2,3,1)是平面的一个法向量,则下列向量中能作为平面法向量的是()a(0,3,1) b(2,0,1)c(2,3,1) d(2,3,1)答案d2设平面的法向量为(1,2,2),平面的法向量为(2,4,k),若,则k()a2 b4c4 d2答案c3若平面与平面的法向量分别是a(4,0,2),与b(1,0,2),则平面与平面的位置关系是()a平行 b垂直c相交不垂直 d无法判定答案b4若直线l1的方向向量与l2的方向向量的夹角为150,则l1与l2这两条异面直线所成的角等于()a30 b150c30或150 d以上均错答案a5若直线l的方向向量与平面的法向量的夹角等于120,则直线l与平面所成的角等于()a120 b60c30 d以上均错解析如图所示,易知直线l与平面所成的角为30.答案c6已知a(1,0,0),b(0,1,0),c(0,0,1),则平面abc的一个单位法向量是()a. b.c. d.解析(1,1,0),(1,0,1),结合选项,验证知应选d.答案d7已知棱长为1的正方体abcda1b1c1d1,则平面acb1的一个法向量为_解析建立空间直角坐标系,如图所示,则a(1,0,0),b(1,1,0),c(0,1,0),b1(1,1,1),(1,1,0),(0,1,1)设平面acb1的一个法向量为n(x,y,z),则由n,n,得令x1,得n(1,1,1)答案(1,1,1)8若两个平面,的法向量分别等于u(1,0,1),v(1,1,0)则这两个平面所成的锐二面角的度数是_解析a(1,0,1),v(1,1,0),|u|,|v|,uv1.cosuv.u,v120,故两平面所成的锐二面角为60. 答案609已知直线l1的一个方向向量为v1(1,1,2),直线l2的一个方向向量为v2(3,3,0),则两直线所成角的余弦值为_解析cosv1,v2.答案10给定下列命题:若n1,n2分别是平面,的法向量,则n1n2;若n1,n2分别是平面,的法向量,则n1n20;若n是平面的法向量,且向量a与平面共面,则an0;若两个平面的法向量不垂直,则这两个平面一定不垂直其中正确命题的序号是_答案11设a,b分别是直线l1和l2的方向向量,根据下列条件判断l1与l2的位置关系(1)a(2,3,1),b(6,9,3);(2)a(5,0,2),b(0,4,0);(3)a(2,1,4),b(6,3,3)解(1)a(2,3,1),b(6,9,3),ab,ab,l1l2.(2)a(5,0,2),b(0,4,0),ab0,ab,l1l2.(3)a(2,1,4),b(6,3,3),a与b不共线,也不垂直,l1与l2的位置关系是相交或异面12设u,v分别是平面,的法向量,根据下列条件判断,的位置关系(1)u(1,1,2),v;(2)u(0,3,0),v(0,5,0);(3)u(2,3,4),v(4,2,1)解(1)u(1,1,2),v,uv3210.uv,.(2)u(0,3,0),v(0,5,0),uv,uv,.(3)u(2,3,4),v(4,2,1),u与v既不共线,也不垂直,平面与相交(不垂直)13设u是平面的法向量,a是直线l的方向向量,根据下列条件判断与l的关系(1)u(2,2,1),a(3,4,2);(2)u(0,2,3),a(0,8,12);(3)u(4,1,5),a(2,1,0)解(1)u(2,2,1),a(3,4,2),ua6820.ua.直线l与平面的位置关系是l或l.(2)u(0,2,3),a(0,8,12),ua.ua,l.(3)u(4,1,5),a(2,1,0),u与a不共线也不垂直l与相交(斜交)14若直线a和b是两条异面直线,它们的方向向量分别是(1,1,1),和(2,3,2),求直线a和b的公垂线的一个方向向量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临床路径风险预警的虚拟仿真模型构建
- 硕士毕业论文指导老师评语大全
- 业财融合成本管控机制
- 专科生毕业论文写作规范-论文格式-
- 商务管理专业毕业论文范文
- 毕业论文目录及正文格式要求
- 战略成本管理方法
- 新媒体环境下综艺节目发展趋势研究
- 语言学类毕业论文格式
- 合并糖尿病肿瘤患者临床试验血糖管理方案
- 小学英语 外研版(一年级起点) 五年级上册 The Elves and the Shoemaker 绘本课件
- 初中数学大纲与初中数学知识点总结
- 2024黑龙江省建筑安装集团限公司面向社会招聘114人公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- JJG 365-2008电化学氧测定仪
- 停车场引资计划书
- 保卫科月工作总结
- 整本书阅读教学设计案例
- 律师事务所投标书(两份)
- 食品安全风险管控日管控检查清单
- 《思想道德与法治》学习法治思想 提升法治素养-第六章
- AI人工智能应用介绍PPT
评论
0/150
提交评论