




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版八年级数学上13.3等腰三角形教学设计(4课时)【教学目标】教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.能力训练要求1.经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.【教学重难点】重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.【教学过程】一、提出问题,创设情境师:在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:三角形是轴对称图形吗?什么样的三角形是轴对称图形?生有的三角形是轴对称图形,有的三角形不是.师:那什么样的三角形是轴对称图形?生满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.师:很好,我们这节课就来认识一种成轴对称图形的三角形等腰三角形.二、导入新课师:同学们通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.生乙在甲同学的做法中,A点可以取直线L上的任意一点.师:对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,剪出一个等腰三角形.师:按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.师:有了上述概念,同学们来想一想.1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?生甲等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.师:同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.生乙我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.生丙我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.生丁我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.生戊老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.师:你们说的是同一条直线吗?大家来动手折叠、观察.生齐声它们是同一条直线.师:很好.现在同学们来归纳等腰三角形的性质.生我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.师:很好,我们来总结等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).师:由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).生甲如右图,在ABC中,AB=AC,作底边BC的中线AD,因为所以BADCAD(SSS).所以B=C.生乙如右图,在ABC中,AB=AC,作顶角BAC的角平分线AD,因为所以BADCAD(SAS),所以BD=CD,BDA=CDA=BDC=90.师:很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看例题.例:如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求ABC各角的度数.师:同学们先思考一下,我们再来分析这个题.生根据等边对等角的性质,我们可以得到A=ABD,ABC=C=BDC,再由BDC=A+ABD,就可得到ABC=C=BDC=2A.再由三角形内角和为180,就可求出ABC的三个内角.师:这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把A设为x的话,那么ABC、C都可以用x来表示,这样过程就更简捷.解:因为AB=AC,BD=BC=AD,所以ABC=C=BDC,A=ABD(等边对等角).设A=x,则BDC=A+ABD=2x,从而ABC=C=BDC=2x.于是在ABC中,有A+ABC+C=x+2x+2x=180,解得x=36.在ABC中,A=35,ABC=C=72.师:下面我们通过练习来巩固这节课所学的知识.三、随堂练习课本P56练习1、2、3题.四、课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.五、课后作业课本77页练习.第2课时【教学目标】知识与技能探索等腰三角形的判定定理.过程与方法探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念.情感、态度与价值观通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.【教学重难点】重点:等腰三角形的判定定理及其应用.难点:探索等腰三角形的判定定理.【教学过程】一、提出问题,创设情境师:上节课我们学习了等腰三角形的性质,现在大家来回忆一下,等腰三角形有些什么性质呢?生甲等腰三角形的两底角相等.生乙等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.师:同学们回答得很好,我们已经知道了等腰三角形的性质,那么满足了什么样的条件就能说一个三角形是等腰三角形呢?这就是我们这节课要研究的问题.二、导入新课师:同学们看下面的问题并讨论、思考:如图,位于海上A、B两处的两艘救生船接到O处遇险船只的报警,当时测得A=B.如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系?生甲应该能同时赶到出事地点.因为两艘救生船的速度相同,同时出发,在相同的时间内走过的路程应该相同,也就是OA=OB,所以两船能同时赶到出事地点.生乙我认为能同时赶到O点的位置很重要,也就是A果不等于B,那么同时以同样的速度就不一定能同时赶到出事地点.师:现在我们把这个问题一般化,在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系?生丙我想它们所对的边应该相等.师:为什么它们所对的边相等呢?同学们思考一下,给出一个简单的证明.生丁我是运用三角形全等来证明的.例1:已知:在ABC中,B=C(如图).求证:AB=AC.证明:作BAC的平分线AD.在BAD和CAD中BADCAD(AAS).AB=AC.师:太好了.从丁同学的证明结论来看,在一个三角形中,如果有两个角相等,那么它们所对的边也相等,也就说这个三角形就是等腰三角形.这个结论也回答了我们一开始提出的问题.也就是如何来判定一个三角形是等腰三角形.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).师:下面我们通过几个例题来初步学习等腰三角形判定定理的简单运用.例2:求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.【分析】这个题是文字叙述的证明题,我们首先得将文字语言转化成相应的数学语言,再根据题意画出相应的几何图形.已知:CAE是ABC的外角,1=2,ADBC(如图).求证:AB=AC.师:同学们先思考,再分析.生要证明AB=AC,可先证明B=C.师:这位同学首先想到我们这节课的重点内容,很好!生接下来,可以找B、C与1、2的关系.师:我们共同证明,注意每一步证明的理论根据.证明:ADBC,1=B(两直线平行,同位角相等),2=C(两直线平行,内错角相等).又1=2,B=C,AB=AC(等角对等边).师:看小黑板,同学们试着完成这个题.已知:如图,ADBC,BD平分ABC.求证:AB=AD.证明:ADBC,ADB=DBC(两直线平行,内错角相等).又BD平分ABC,ABD=DBC,ABD=ADB,AB=AD(等角对等边).师:下面来看另一个例题.例3:如图(1),标杆AB的高为5米,为了将它固定,需要由它的中点C向地面上与点B距离相等的D、E两点拉两条绳子,使得D、B、E在一条直线上,量得DE=4米,绳子CD和CE要多长?(1) (2)【分析】这是一个与实际生活相关的问题,解决这类型问题,需要将实际问题抽象为数学模型.本题是在等腰三角形中已知等腰三角形的底边和底边上的高,求腰长的问题.解:选取比例尺为1100(即为1 cm代表1 m).(1)作线段DE=4 cm;(2)作线段DE的垂直平分线MN,与DE交于点B;(3)在MN上截取BC=2.5 cm;(4)连接CD、CE,CDE就是所求的等腰三角形,量出CD的长,就可以算出要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 移动应用内广告位布局创新创业项目商业计划书
- 虚拟现实全球文化交流平台创新创业项目商业计划书
- 本地生活优惠信息与团购服务创新创业项目商业计划书
- 输油泵安全消防知识培训课件
- 现场培训消防安全知识内容课件
- 2025年家庭教育指导服务市场用户需求分析与市场拓展策略研究报告
- 2025年新型甜味剂在饮料行业的法规监管与消费者信任度提升策略分析
- 2025年旅游地产项目规划设计中的文化遗产旅游可持续发展路径报告
- 湖北省宜昌市高中教学协作体2026届化学高一上期末调研试题含解析
- 江苏省淮安市清江中学等四校2026届化学高三第一学期期末复习检测模拟试题含解析
- 农机服务合同协议书范本
- 食品代工生产合同协议书
- 红岩中考试题及答案
- 2023新教科版科学四年级上册第一单元教学设计
- 宫腔镜诊疗麻醉管理专家共识
- 2025-2030利巴韦林原料药行业市场现状供需分析及投资评估规划分析研究报告
- 破产清算申请书(债务人版)
- 染整基础知识培训课件
- 长沙市芙蓉区2024-2025学年四年级数学第二学期期末经典模拟试题含解析
- 出差国外安全协议书
- 人教版九年级英语unit-1教案电子教案
评论
0/150
提交评论