




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题六方案设计与决策方案设计题包括运用代数知识解决的方案讨论问题和图案设计型问题这类问题常以生产、生活、市场经济等社会热点问题为素材,在各地中考中备受关注这些问题新颖灵活,多以填空题、解答题形式出现考点一利用方程(或不等式)、一次函数等知识进行方案决策设计本类题是一类综合性较强的分析决策问题,涵盖了方程、不等式、一次函数等有关知识,考查学生的综合分析、归纳能力【例1】 2011年4月28日,以“天人长安,创意自然城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园,这次园艺会的门票分为个人票和团体票两大类,其中个人票设置有三种:票的种类夜票(a)平日普通票(b)指定日普通票(c)单价(元/张)60100150某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中b种票的张数是a种票张数的3倍还多8张,设购买a种票张数为x,c种票张数为y.(1)写出y与x之间的函数关系式;(2)设购票总费用为w元,求出w(元)与x(张)之间的函数关系式;(3)若每种票至少购买1张,其中购买a种票不少于20张,则有几种购票方案?并求出购票总费用最少时,购买a,b,c三种票的张数解:(1)y4x92.(2)w60x100(3x8)150(4x92)240x14 600.(3)由题意,得解之,得20x23.x是正整数,x可取20,21,22.共有3种购票方案w240x14 600,k2400,w随着x的增大而减小,当x22时,w的取值最小即当a票购买22张时,购票的总费用最少购票总费用最少时,购买a,b,c三种票的张数分别为22,74,4.本类型题目主要特点有:(1)当利用不等关系来确定取值范围时,要结合不等式的取值范围来讨论;(2)当利用方程来确定取值范围时,往往利用解的整数性来解答以上两种类型都一般与一次函数相联系,在解决实际问题时,要注意其实际意义,确定自变量的取值范围是解决一次函数最值的关键考点二利用几何知识进行方案决策设计利用几何知识进行方案设计,不仅要有一定的几何作图能力,而且要能熟练地运用几何的有关性质及全等、相似、图形变换、方程及三角函数的有关知识,并注意充分发挥分类讨论、类比归纳、猜想验证等数学思想方法的作用【例2】 三个牧童a,b,c在一块正方形的牧场上看守一群牛,为保证公平合理,他们商量将牧场划分为三块分别看守,划分的原则是:每个人看守的牧场面积相等;在每个区域内,各选定一个看守点,并保证在有情况时他们所需走的最大距离(看守点到本区域内最远处的距离)相等,按照这一原则,他们先设计了一种如图的划分方案:把正方形牧场分成三块相等的矩形,大家分头守在这三个矩形的中心(对角线交点),看守自己的一块牧场过了一段时间,牧童b和牧童c又分别提出了新的划分方案牧童b的划分方案如图:三块矩形的面积相等,牧童的位置在三个小矩形的中心牧童c的划分方案如图:把正方形的牧场分成三块矩形,牧童的位置在三个小矩形的中心,并保证在有情况时三个人所需走的最大距离相等请回答:(1)牧童b的划分方案中,牧童_(填a,b或c)在有情况时所需走的最大距离较远;(2)牧童c的划分方案是否符合他们商量的划分原则?为什么?(提示:在计算时可取正方形边长为2)解:(1)c;(2)牧童c的划分方案不符合他们商量的划分原则理由如下:如图,在正方形defg中,四边形henm,mnfp,dhpg都是矩形,且hnnphg.可知ennf,s矩形henms矩形mnfp.取正方形边长为2,设hdx,则he2x.在rthen和rtdhg中,由hnhg得eh2en2dh2dg2,即(2x)212x222.解得x,he2.s矩形henms矩形mnfp1,s矩形dhpg2.s矩形henms矩形dhpg.故牧童c的划分方案不符合他们商量的划分原则几何图形的分割、组合设计在中考中常出现,有时是根据面积相等来分割,有时是根据线段间的关系来分割解决这类问题的关键是要抓住组合前后两个图形之间的联系,列出必要的关系式进行解答考点三利用解直角三角形进行测量方案设计这类题目的特点是在测量方案中,用有关的三角函数知识解决【例3】 如图,飞机沿水平方向(a,b两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶m到飞行路线ab的距离mn.飞机能够测量的数据有俯角和飞行距离(因安全因素,飞机不能飞到山顶的正上方n处才测飞行距离),请设计一个求距离mn的方案,要求:(1)指出需要测量的数据(用字母表示,并在图中标出);(2)用测出的数据写出求距离mn的步骤解:此题为开放题,答案不唯一,只要方案设计合理即可(1)如图,测出飞机在a处对山顶的俯角,测出飞机在b处对山顶的俯角,测出ab的水平距离d,连接am,bm.(2)步骤:第一步:在rtamn中,tan ,an;第二步:在rtbmn中,tan ,bn;其中:andbn,解得mn.解此类问题时,要能从实际问题中抽象出直角三角形模型或构造出直角三角形进行解答当不能直接算出某些量时,可通过解方程的办法加以解决1一位园艺设计师计划在一块形状为直角三角形且有一个内角为60的绿化带上种植四种不同的花卉,要求种植的四种花卉组成面积分别相等、形状完全相同的几何图案某同学为此提供了如图所示的四种设计方案其中可以满足园艺设计师要求的有()a2种 b3种c4种 d1种2小明设计了一个利用两块相同的长方体木块测量一张桌子高度的方案,首先按图(1)方式放置,再交换两木块的位置,按图(2)方式放置测量的数据如图,则桌子的高度是()a73 cm b74 cmc75 cm d76 cm3某商店积压了100件某种商品,为使这批货物尽快出售,该商店有两种销售方案:(1)按原价销售;(2)先将价格提高到原来的2.5倍,再作三次降价处理,第一次降价30%标出“亏本价”,第二次降价30%,标出“破产价”,第三次又降价30%,标出“跳楼价”,三次降价处理销售情况如下表:降价次数一二三销售件数1040一抢而光则两种销售方式盈利多的是()a方案一b方案二c相等d没有商品价格,无法比较4某市有甲、乙两家液化气站,他们的每罐液化气的价格、质量都相同,为了促销,甲站的液化气每罐降价25%销售;乙站的液化气第1罐按原价销售,从第2罐开始以7折优惠销售,若小明家购买8罐液化气,则最省钱的方法是买_站的5某工厂现有甲种原料226 kg,乙种原料250 kg,计划利用这两种原料生产a,b两种产品共40件,生产a,b两种产品的用料情况如下表:需要甲原料需要乙原料一件a种产品7 kg4 kg一件b种产品3 kg10 kg则生产方案共有_种6从边长为a的大正方形纸板中间挖去一个边长为b的小正方形后,将其截成的四个相同的等腰梯形(如图),可以拼成一个平行四边形(如图)现有一平行四边形纸片abcd(如图),已知a45,ab6,ad4.若将该纸片按图方式截成四个相同的等腰梯形,然后按图方式拼图,则得到的大正方形的面积为_7为制定本市初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生身高作调查,现有三种调查方案:a测量体校中180名男子篮球、排球队员的身高;b查阅有关外地180名男生的身高的统计资料;c在本市的市区和郊县各任选一所完全中学、两所初级中学,在这六所学校有关年级的(1)班中,由抽签的方法分别选出10名男生,然后测量他们的身高为了达到估计本市初中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?选_;理由_8一天,数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙而形成的“圆锥形坑”的深度,来评估这些坑对河道的影响,如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:先测出沙坑坑沿圆的周长为34.54米;甲同学直立于沙坑坑沿圆周所在的平面上,经过适当调整自己所处的位置,当他位于b处时恰好他的视线经过沙坑坑沿圆周上一点a看到坑底s(甲同学的视线起点c与点a,点s三点共线),经测量:ab1.2米,bc1.6米根据以上测量数据,求圆锥形坑的深度(圆锥的高)(取3.14,结果精确到0.1米)9某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店两个连锁店销售这两种电器每台的利润(元)如下表:空调机电冰箱甲连锁店200170乙连锁店160150设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元)(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?10要对一块长60米、宽40米的矩形荒地abcd进行绿化和硬化(1)设计方案如图所示,矩形p,q为两块绿地,其余为硬化路面,p,q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形abcd面积的,求p,q两块绿地周围硬化路面的宽(2)某同学有如下设想:设计绿化区域为相外切的两个等圆,圆心分别为o1和o2,且o1到ab,bc,ad的距离与o2到cd,bc,ad的距离都相等,其余为硬化地面,如图所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由参考答案专题提升演练1b2.c3.b4.乙5.26.1167方案c;方案c采用了随机抽样的方法,此样本比较具有代表性,可以被用来估计总体8解:如图,设圆锥底面圆圆心为o,连接os,oa,则oabc90,osbc,acbaso.soacba.os.oa5.5,bc1.6,ab1.2,os7.3.故“圆锥形坑”的深度约为7.3米9解:(1)根据题意知,调配给甲连锁店电冰箱为(70x)台,调配给乙连锁店空调机为(40x)台,电冰箱为(x10)台,则y200x170(70x)160(40x)150(x10),即y20x16 800.10x40.y20x16 800(10x40)(2)按题意知:y(200a)x170(70x)160(40x)150(x10),即y(20a)x16 800.20a170,a30.调配方案如下:当0a20时,调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调机0台,电冰箱30台,总利润最大;当a20时,x的取值在10x40内的所有方案
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年城乡结合部电力设施改造分包协议
- 2025版内容创业佣金提成协议下载
- 2025版材料科学与工程实习生就业合同规范
- 河北省泊头市2025年上半年事业单位公开遴选试题含答案分析
- 2025年度智能穿戴设备委托开发合同
- 2025方管市场大宗交易合作协议书
- 2025年度人民法院协议离婚程序操作指南及案件审理合同
- 2025年度城市环卫货物委托运输协议
- 2025版南汇农业志编纂与非物质文化遗产保护合同
- 2025年建筑防水材料销售与施工培训承包协议
- 酒店客房验收工程项目检查表
- 个人健康个性化营养搭配与服务提供系统建设
- 加强教学常规管理提高教学质量
- 产品包装设计与印刷流程手册
- 随机动态规划与强化学习-洞察分析
- 肾占位性变病
- 大型运输车辆交通安全教育
- 沐足行业严禁黄赌毒承诺书
- 语文开学第一课课件 2024-2025学年统编版语文七年级上册
- 人教版高中生物必修1全册教学课件
- 青岛版小学数学五年级上册教案全册
评论
0/150
提交评论