




免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
7.2一元二次不等式及其解法1会从实际情境中抽象出一元二次不等式模型2通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系3会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图1一元二次不等式的解法一元一次不等式axb(a0)的解集为(1)当a0时,解集为_(2)当a0时,解集为_2一元二次不等式与相应的一元二次函数及一元二次方程的关系如下表:判别式b24ac000二次函数yax2bxc(a0)的图象一元二次方程ax2bxc0(a0)的根有两相异实根x1,x2(x1x2)有两相等实根x1x2没有实数根ax2bxc0(a0)的解集_ax2bxc0(a0)的解集_3用程序框图来描述一元二次不等式ax2bxc0(a0)的求解的算法过程为:1不等式x2x的解集是()a(,0) b(0,1)c(1,) d(,0)(1,)2(2012重庆高考,文2)不等式0的解集为()a(1,) b(,2)c(2,1) d(,2)(1,)3若a0,则关于x的不等式x24ax5a20的解是()ax5a或xabxa或x5ac5axadax5a4若关于x的不等式x22xmx的解集是x|0x2,则实数m的值是_一、一元二次不等式的解法【例1】 解下列不等式:(1)2x24x30;(2)3x22x80;(3)12x2axa2(ar)方法提炼1解一元二次不等式的一般步骤:(1)对不等式变形,使一端为0且二次项系数大于0,即ax2bxc0(a0),ax2bxc0(a0);(2)计算相应的判别式;(3)当0时,求出相应的一元二次方程的根;(4)根据对应二次函数的图象,写出不等式的解集2对于解含有参数的二次不等式,一般讨论的顺序是:(1)讨论二次项系数是否为0,这决定此不等式是否为二次不等式;(2)当二次项系数不为0时,讨论判别式是否大于0;(3)当判别式大于0时,讨论二次项系数是否大于0,这决定所求不等式的不等号的方向;(4)判断二次不等式两根的大小提醒:当a0时,axb不是一元一次不等式;当a0,b0时,它的解集为;当a0,b0时,它的解集为r.请做演练巩固提升2二、分式不等式的解法【例2】(2012江西高考)不等式0的解集是_方法提炼对于形如0(0)可等价转化为f(x)g(x)0(0)来解决;对于0(0)可等价转化为当然对于高次不等式可用“穿根法”解决请做演练巩固提升1三、一元二次不等式的实际应用【例3】某产品按质量可分成6种不同的档次,若工时不变,每天可生产最低档次的产品40件,如果每提高一个档次,每件利润可增加1元,但每天要少生产2件产品(1)若最低档次的产品每件利润为16元,则生产哪种档次的产品所得到的利润最大?(2)若最低档次的产品每件利润为22元,则生产哪种档次的产品所得到的利润最大?方法提炼解不等式应用题的步骤请做演练巩固提升6与一元二次不等式有关的恒成立问题【典例】(12分)设函数f(x)mx2mx1.(1)若对于一切实数x,f(x)0恒成立,求m的取值范围;(2)若对于x1,3,f(x)m5恒成立,求m的取值范围分析:(1)对于xr,f(x)0恒成立,可转化为函数f(x)的图象总是在x轴下方,可讨论m的取值,利用判别式求解(2)含参数的一元二次不等式在某区间内的恒成立问题,常有两种处理方法:方法一是利用二次函数区间上的最值来处理;方法二是先分离出参数,再去求函数的最值来处理一般方法二比较简单规范解答:(1)要使mx2mx10恒成立,若m0,显然10;若m0,则4m0.综上有4m0.(4分)(2)要使f(x)m5在1,3上恒成立,即m2m60在x1,3上恒成立(6分)有以下两种方法:方法一:令g(x)m2m6,x1,3当m0时,g(x)在1,3上是增函数,(8分)所以g(x)maxg(3)7m60,所以m,则0m;(10分)当m0时,60恒成立;当m0时,g(x)在1,3上是减函数,所以g(x)maxg(1)m60.所以m6,所以m0.综上所述:m的取值范围是.(12分)方法二:因为x2x120,又因为m(x2x1)60,所以m.(8分)因为函数y在1,3上的最小值为,所以只需m即可(10分)所以,m的取值范围是.(12分)答题指导:1.与一元二次不等式有关的恒成立问题,可通过二次函数求最值,也可通过分离参数,再求最值2解决恒成立问题一定要搞清谁是自变量,谁是参数,一般地,知道谁的范围,谁就是变量,求谁的范围,谁就是参数3对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x轴下方4本题考生易错点:忽略对m0的讨论这是由思维定势所造成的1不等式0的解集为()ax|1x2 bx|1x2cx|1x2 dx|1x22已知不等式x2x0的解集为m,且集合nx|1x1,则mn为()a0,1) b(0,1) c0,1 d(1,03条件p:0,条件q:x27x100,则p是q的()a充分不必要条件 b必要不充分条件c充要条件 d既不充分也不必要条件4当x(1,2)时,不等式x2mx40恒成立,则m的取值范围是_5(2012江苏高考)已知函数f(x)x2axb(a,br)的值域为0,),若关于x的不等式f(x)c的解集为(m,m6),则实数c的值为_6某种商品,现在定价p元,每月卖出n件,设定价上涨x成,每月卖出数量减少y成,每月售货总金额变成现在的z倍(1)用x和y表示z;(2)设x与y满足ykx(0k1),利用k表示当每月售货总金额最大时x的值;(3)若yx,求使每月售货总金额有所增加的x值的范围参考答案基础梳理自测知识梳理1(1)(2)2x|xx1或xx2x|xx1x|xrx|x1xx230?(,x2)(x1,)(,)基础自测1d解析:x2xx(x1)0x1或x0.2c解析:不等式0,解不等式得其解集为(2,1),故选c.3b解析:由x24ax5a20,得(x5a)(xa)0,a0,x5a或xa.41解析:由x22xmx,得x24x2mx0,即xx(42m)0,不等式的解集为x|0x2,42m2.m1.考点探究突破【例1】解:(1)424230,方程2x24x30没有实根二次函数y2x24x3的图象开口向上,与x轴没有交点,即2x24x30恒成立,不等式2x24x30的解集为r.(2)原不等式可化为3x22x80,1000,方程3x22x80的两根为2,.结合二次函数y3x22x8的图象可知,原不等式的解集为.(3)由12x2axa20(4xa)(3xa)00,a0时,解集为;a0时,x20,解集为x|xr且x0;a0时,解集为.【例2】(3,2)(3,)解析:不等式0可化为(x2)(x3)(x3)0,由穿根法(如图)得,所求不等式的解集为(3,2)(3,)【例3】解:(1)设生产第x档次产品时,所获利润最大,则生产第x档次产品时,每件利润为16(x1)1元,生产第x档次产品时,每天生产402(x1)件,所以生产第x档次产品时,每天所获利润为:y402(x1)16(x1)2(x3)2648.当x3时,y最大,即生产第三档次产品利润最大(2)若最低档次产品每件利润为22元,则生产第x档次产品时,每天所获利润为:y402(x1)22(x1)2x2882.因为x1,6,且xn,所以当x1时,y最大,即生产第一档次产品利润最大演练巩固提升1b解析:原不等式1x2.2a解析:由x2x0,得0x1,所以mn为0,1)选a.3b解析:条件p:(x5)(x2)0且x22x5;条件q:2x5.显然:pq,qp.故选b.4(,5解析:设f(x)x2mx4,由题意,得即m5.59解析:f(x)x2axb的值域为0,),a24b0.又f(x)c的解集为(m,m6),即x2axbc0的解集为(m,m6),m,m6是对应方程x2axbc0的两个根,由得,a24m224m36,由得,4b4c4m224m,由可得,4m224m364m224m4c,解得c9.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度电子商务平台产品质检与售后服务合同
- 二手车买卖合同纠纷处理协议书模板
- 设计院个人工作方案
- 《商务礼仪》课件-第十三章 涉外礼仪
- 银行普法知识课件
- 员工福利方案模板
- 2025-2030年中国空调器储液项目投资可行性研究分析报告
- 2025年中国智能小区行业发展监测及投资战略研究报告
- qa个人工作总结
- 降水施工方案
- 税务系统预防职务犯罪警示教育课演讲稿
- 拔尖创新人才培养的评价与反馈机制
- 艺术类高中课程走班方案
- 【排放清单】省市县行业温室气体排放清单报告模板
- 《篮球裁判法及规则》课件
- 中国普通食物营养成分表(修正版)
- 隧道工程施工劳务分包合同
- Excel常用函数公式及技巧
- 学校心理健康教育合作协议书
- 2024-2030年中国军用滑环行业市场发展趋势与前景展望战略分析报告
- 部编版高中语文必修上第六单元任务群教学设计
评论
0/150
提交评论