人教2011版小学数学四年级▁【课后反思】.doc_第1页
人教2011版小学数学四年级▁【课后反思】.doc_第2页
人教2011版小学数学四年级▁【课后反思】.doc_第3页
人教2011版小学数学四年级▁【课后反思】.doc_第4页
人教2011版小学数学四年级▁【课后反思】.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版四年级数学下册数学广角鸡兔同笼问题课后反思(一) 菏泽市牡丹区马村小学教师祝艳丽鸡兔同笼问题有一定的难度,课前我对该班的学生进行了估计。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习鸡兔同笼可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生在尝试,探索,合作中弄懂鸡兔同笼问题的基本解题思路。我们知道数学不仅仅要让学生学会计算、解决实际问题等,还要通过这些知识的学习让学生的思维得到锻炼。鸡兔同笼问题就是这样一种问题,在生活中,鸡兔同笼的现象是很少碰到,没见过有人把鸡和兔放在一个笼子里,即使放在一个笼子里又有谁会去数他们的脚呢?直接数头不就行了?那么是不是说“鸡兔同笼”是一个完全没有价值的数学问题呢?显然不是,鸡兔同笼问题,是让我们通过鸡兔腿数的变化,在这种变化中寻找不变的规律,并采用有效的手段来理解数学问题的过程。虽然课已经上完,但是我知道我的教学工作并没有结束,我不能停下前进的脚步,是应该静下心来,好好地自我反思、总结的时候了。一、对教材的分析要全面、到位,把握内在联系,分清主次轻重。 我反复细细地、全面地解读教材,才明白其实假设法、画图法与列表法并不是孤立的、互不相干的几部分,而恰恰相反的,假设法、画图法与列表法一样都是在应用假设的数学思想,它们是相互关联的。在这节课当中,我主要借助教材上的列表法同时结合引导学生画图的方法,再配合假设法。充分运用了动手操作、幻灯片演示这些手段,让学生弄懂鸡兔同笼问题的基本解题思路。本节课的重点放在了“尝试探究”这一部分,使学生充分感受数学的思维过程,培养学生的逻辑推理能力。通过画图的过程中充分调动了学生的积极性,经历了一个探索的过程,这时候再介绍假设法就水到渠成了。也实现了运用多种方法解决问题的目的。起到了意想不到的效果。应用练习是一个提升的过程,让学生回顾研究鸡兔同笼问题的解决方法的过程,选择合适的方法来解决新的问题。教材将这一经典、传统的题目“鸡兔同笼”选编为“数学广角”一节,其目的是借助“鸡兔同笼”这个问题作为载体,让学生初步获得一些数学活动的经验,引导学生对一些日常生活中的现象进行观察与思考,从而发现一些特殊的规律,体会解决问题的一般策略。二、注重思维能力的培养和数学思想的渗透。 让学生在参与观察、猜想、验证、综合实践等数学活动中,发展合情推理和演绎推理能力。用数学语言清晰地表达自己的想法是培养学生思维能力的重要途径。从课初的随意猜想到表格中的有序猜想,从一般验证到表格中数据变化规律的发现,从列表法很快自然联想到画图法、假设法,学生的思维经历了从无序到有序、从特殊到一般、从借鉴到创新、从肤浅到深刻等方面的巨大变化,学生的思维能力也随之得到了极大的提升。 我有意识的向学生渗透数学思想和方法。如:用容易探究的小数量替代孙子算经原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法;用“列表法”、“画图法”等解决问题,渗透了假设的思想和方法。这些对于学生而言,无疑奠定了可持续发展的坚实基础。遵照新课程标准的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。通过我创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。图形与鸡兔同笼的有效结合,让知识“二合为一”,有效沟通对知识的迁移,以及培养孩子“举一反三”的能力有重要的意义。三、注重数学文化的传承。 鸡兔同笼问题是孙子算经中一道影响较大的名题,一直流传至日本等国,引起了许多国家的众多数学爱好者的广泛关注。教学中,教师把“数学文化”和孙子算经及其中关于鸡兔同笼问题的原题,用课件科学而生动地再现于课堂,极大地激发和调动了学生的探究兴趣,充分地传承和弘扬了经典的数学文化,较好地体现和提升了课堂的教学品味,也让“数学味”萦绕课堂,贯穿课堂始终。 四、真正让学生亲身经历列表、尝试和不断调整的过程,让不同的学生学有不同的数学。 由于学生原有认知水平的不同,存在较大的差异。所以,在同样的列表中,学生的认知水平也有一定的层次。但在教学的过程中,我并没有提出统一的要求,允许不同的学生采用不同的解题方法。在交流时,有些学生用逐一列表的方法,也没去指责他们,而是肯定他们想出的方法有序且不遗漏。再引导学生从左往右、从右往左看发现规律,体会鸡兔只数变化之间的置换关系。 这样学生在具体的解决问题过程中,他们根据自己的经验,逐步探索不同的方法,找到解决问题的策略;在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。五、教师要走进课堂,走进学生的心里,注意捕捉并利用课堂生成的新资源。 在本节课展示学生作业的时候,我把一些做错同学的作业拿来展示,通过给这一些学生纠错,学生们在交流与思考中,理解并明白出错的原因,从而更加深了对假设法算理的理解与把握。课堂上我很重视把错误的资源给充分利用起来,从而也收获了意想不到的效果。人教版四年级数学下册数学广角鸡兔同笼问题课后反思(二) 菏泽市牡丹区马村小学教师祝艳丽鸡兔同笼问题中的数学思想方法及其渗透策略“鸡兔同笼”问题是我国古代数学名著孙子算经中记载的一道数学趣题,是人教版义务教育课程标准实验教科书数学四年级下册第九单元“数学广角”中的教学内容。教材虽然只编排了一道例题,但此例在解决“鸡兔同笼”问题时,先后呈现了多种不同的解决问题的策略。这些策略的背后究竟隐含着哪些重要的数学思想方法,又该如何向学生有效渗透这些重要的数学思想方法?对此,遵循新课程的目标,按照新课标的要求,结合新教材的特点,我觉得都颇具探究价值。一、解决“鸡兔同笼”问题策略中蕴涵的数学思想方法数学思想是对数学知识和方法的本质及规律的理性认识,数学方法则是数学思想的具体表现形式,数学思想和数学方法合在一起,称为数学思想方法。解决问题的策略是以一定的数学思想方法为指导,在特定问题情境中,为实现教学目标而制定并在实施过程中不断调适、优化,以使问题得以有效解决的最佳系统决策与设计。在解决“鸡兔同笼”问题的过程中所使用的不同的解决问题的策略背后,一定隐含了相应的数学思想方法。教材首先将孙子算经中的原题:“笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?”通过小精灵的提示:“我们可以先从简单的问题入手。”转化成了例题:“笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?”同样是基本的“鸡兔同笼”问题,其中数量由大到小的变化,既为分析和解决问题提供了方便,也巧妙渗透了转化的数学思想方法。转化是指将有待解决的问题,归结为一类已经解决或较易解决的问题中去,以求得问题的解决。教学中常常用到的化“难”为“易”,化“繁”为“简”,化“生”为“熟”, 化“数”为“形”, 化“曲”为“直”,化“圆”为“方”等都是数学学习中不可缺少的转化的思想方法。1猜想的思想方法让学生先根据例题中的“从上面数,有8个头。”大胆猜测“鸡和兔各有几只?”再根据“从下面数,有26只脚。”来小心求证。在猜想不正确的情况下,学生逐步感受到“如果总脚数猜多了,就要多猜鸡少猜兔的只数;如果总脚数猜少了,要多猜兔少猜鸡的只数。”也正是在这样的过程中,学生参与探究的热情更高了,开展探究的勇气更大了,解决问题的思路更明了。美籍匈牙利数学家、教育家、数学解题方法论的开拓者波利亚说,“数学事实首先是被猜想,然后是被证实。”数学猜想是人们在已有知识经验的基础上对问题进行直觉试探,从而形成某种假设的一种思维活动和思想方法。让学生先“估”后“数”、先“估”后“算”、先“估”后“量”、先“猜想”后“列式求解”等,都决定了猜想的思想方法在数学教学中的重要地位与作用。2列举的思想方法如果把各种猜想的结果有序填写到教材上的表格之中(见下表),即为全部猜想的有序列举。从表中不难看出“鸡3只、兔5只”就是满足问题要求的答案。观察表中数据的变化规律,还可发现:“当鸡的只数每减少1只,兔的只数每增加1只,脚的只数就会增加2只。”这一规律将为下面的数学思想方法的渗透作好了孕伏。这也正是列举和列表的数学思想方法在解决这一问题中的灵活运用。鸡的只数876兔的只数01脚的只数在许多情况下,有些实际问题往往还无法建立合适的数学模型,而通过列举的数学思想方法却能非常方便地找到答案,进而也为进一步建立数学模型打开了一扇明亮的窗。3画图的思想方法使用转化的数学思想方法,将大数目的“鸡兔同笼”问题转变成小数目的“鸡兔同笼”问题后,使得用画出直观图的思想方法来解决这一问题成为可能。第一步:画出8个头和26只脚;第二步:给8个头都配上两只脚;第三步:将多出的10只脚添加在其中的5个头上。经历上述画图过程后,用假设的思想方法解决“鸡兔同笼”问题的思路逐步清晰可见。画图的思想方法已成为小学生学习数学的一种需要。学生在教师演示画图的活动中,能感悟策略、发展思维、体会方法和获得思想。4假设的思想方法教材指出,还可以这样想:如果笼子里都是鸡,那么就有8216只脚,这样就多出261610只脚。一只兔比一只鸡多2只脚,也就是有1025只兔。所以笼子里有3只鸡,5只兔。学生顺势指出,还可以这样想:如果笼子里都是兔,那么就有8432只脚,这样就少出32266只脚。一只鸡比一只兔少2只脚,也就是有623只鸡。所以笼子里有3只鸡,5只兔。假设的数学思想方法的运用,不仅为快捷解决问题提供了便利,更为培养学生的创新能力开辟了途径。但是,要正确而恰当地运用假设法,就必须深刻把握其“设而不假”的关键要领,即假设的内涵与问题本身并不矛盾,否则,就会造成“失之毫厘,谬以千里”的后果。5建模的思想方法从运用假设的数学思想方法解决“鸡兔同笼”问题的过程中,学生不难归纳出:鸡的只数(头的总个数4脚的总只数)(42),兔的只数(脚的总只数头的总个数2)(42)。运用这个数学模型,无疑可以便捷的解决类似基本的“鸡兔同笼”问题。数学建模是解决实际问题的一种思考方法,它从量和形的侧面去考查实际问题。尽可能通过抽象(或简化)确定出主要的参量、参数,应用有关的定律、原理建立起它们之间的某种关系,这样一个明确的数学问题就是某种简化了的数学模型。作为数学教师,有责任让学生学习和初步掌握数学建模的思想方法, 从而更积极主动地学习数学,这样做将使学生终生受益。6代数的思想方法教材指出,还可以用列方程的方法来解答,即:设有x只兔,那么就有(8x)只鸡。鸡兔共有26只脚,就是:4x2(8x) 26,x5,853,即兔有5只、鸡有3只。代数的思想方法也就是列方程解决问题的思想方法。方程是刻画现实世界的有效模型,通过把生活语言“翻译”成代数语言,根据问题中的已知数和未知数之间的等量关系,在已知数与未知数之间建立一个等式,这就是方程思想的由来。这种解决问题的思想方法直接、简单,可化难为易,特别是在解决比较复杂的数学问题时用代数的思想方法就更容易。7抬脚的解题方法教材最后在“阅读材料”中写道:你知道古人是怎样解决“鸡兔同笼”问题(指孙子算经中的原题)的吗?假设让鸡抬起一只脚,兔抬起两只脚,还有94247只脚;这时每只鸡一只脚,每只兔两只脚,笼子里只要有一只兔,则脚的总数就比头的总数多1;这时脚的总数与头的总数之差473512,就是兔的只数。以上十分形象的“抬脚法”,是一种特殊而巧妙的解决问题的策略,所以教材将其编排在课后的阅读材料中,既留给了学生一个自主探究、广泛交流的学习空间,又让学生进一步感受到了我国古代数学的魅力。二、教学“鸡兔同笼”问题过程中渗透数学思想方法的有效策略细细品味上述数学思想方法,我们不禁感叹到“鸡兔同笼”问题中数学思想方法的多样、深刻与灵巧。但也正是如此,使得鸡兔同笼”问题的教学的挑战性陡增。如何通过一节课或这个单元的教学,才能有效提升学生对之前的教学中已经渗透过的数学思想方法的认识,才能合理渗透在之前的教学中尚未渗透过的新的数学思想方法,已成为教学中不可回避的另一个重要问题1 强化渗透意识数学思想方法的意义和价值决定了其在数学教学中的重要地位和作用。因此,课程标准指出:“教师要发挥主导作用,使学生理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得基本的数学活动经验。”而数学思想方法又常常隐藏于教材之中,这就要求教师在校本研修的过程中,加强对数学思想方法的理论学习,把对基本的数学数学方法的认识作为专业发展的必修课;要在吃透教材的基础上,深刻挖掘隐含于教材字里行间的数学思想方法,认识到数学思想方法对于学生可持续发展的不可替代的作用;要在日常教学中,明确数学思想方法是数学素养的重要组成部分,不断增强自觉渗透数学思想方法的意识。2 遵循渗透原则渗透,即把数学思想方法与数学知识技能、数学活动经验看成一个有机联系的整体,在新、旧知识的学习和新、旧经验的运用中加以适当渗透,而不是刻意添加数学思想方法的内容,更不是片面强调数学思想方法的概念,要让学生在潜移默化中去感受、领悟、积累和提升认识,运用并逐步将数学思想方法内化为良好的思维品质。因而,教学中务必遵循由感性到理性、由具体到抽象、由特殊到一般的渗透原则,使学生的认识过程返朴归真,让学生在自觉状态下,始终以探索者的姿态参与到知识的形成和规律的揭示过程中去,从中不仅仅获得知识技能,发展活动经验,更重要的是与此同时领悟、运用、内化数学思想方法。3把握渗透关联当转化、猜想、列举、画图、假设、建模、代数、抬脚等多种数学思想方法同时作用于“鸡兔同笼”问题中时,它们之间必然存在相互关联之处。转化为猜想、列举、画图等提供了便捷,猜想是列举的开始,列举则是假设的前奏,画图是对列举的结果的形象呈现和为假设提供的直观支撑,假设是对前面诸法的有效提升,建模则是假设的必然结果,代数是假设的联想产物,抬脚无非是假设的另一种特殊形式。教学时,教师要善于把它们联系起来看,结合起来用,以提高教学实效。可见,不同的数学思想方法并不是彼此孤立、互不联系的,较低层次的数学思想方法经过抽象和概括,便上升为较高层次的数学思想方法,而较高层次的数学思想方法则对较低层次的数学思想方法有着指导意义,其往往是通过较低层次的思想方法来实现自身的运用价值。4突出渗透重点如果按思想方法的作用给其分类,转化是解决“鸡兔同笼”问题中的基础性的思想方法,不可少之;猜测、列举、画图、抬脚是解决“鸡兔同笼”问题中的颇有局限性的思想方法,虽为假设做好了铺垫或延伸,但会受到数目大小或奇偶性的限制,不能广泛用之;真正能够适应于此类问题的具有普遍意义的一般性方法,无疑还是假设和代数的思想方法。如果按思想方法的新旧给上述思想方法分类,转化、猜想、列举、画图、建模和代数的思想方法,都是在前面教学中教师多次

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论