




免费预览已结束,剩余2页可下载查看
VIP免费下载
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考数学专题: 开放探究题(含答案)开放探究题是一种新的题型, 关于开放题的概念,主要有下列几种描述:(1)答案不固定或者条件不完备的习题成为开放题;(2)具有多种不同的解法或有多种可能的解答的问题称为开放题. 开放探究题的特点是:(1)条件多余需选择,条件不足需补充;(2)答案不固定;(3)问题一般没有明确的结论,没有固定的形式和方法,需要自己通过观察、分析、比较、概括、推理、判断等探索活动来确定所需求的结论或条件或方法.开放探究题常见的类型有:(1)条件开放型:即问题的条件不完备或满足结论的条件不唯一;(2)结论开放型:即在给定的条件下,结论不唯一;(3)策略开放型:即思维策略与解题方法不唯一;(4)综合型:即条件、结论、策略中至少有两项均是开放的.在解决开放探究题的时候,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答.这类题主要考查我们分析问题和解决问题的能力和创新意识.类型之一 条件开放型问题解这种类型的开放性问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻,是一种分析型思维方式.它要求解题者善于从问题的结论出发,逆向追索,多途寻因。1.已知四边形abcd中,a=b=c=90,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是_2.)如下左图,d、e分别是的边ab、ac上的点,则使的条件是 类型之二 结论开放型问题解决这种类型的问题的时候要充分利用已知条件或图形特征,进行猜想、归纳、类比,透彻分析出给定条件下可能存在的结论现象,然后经过论证作出取舍,这是一种归纳类比型思维. 它要求解题者充分利用条件进行大胆而合理的猜想,发现规律,得出结论,这类题主要考查解题者的发散性思维和所学基本知识的应用能力。3.如上右图,c为线段ae上一动点(不与点a,e重合),在ae同侧分别作正三角形abc和正三角形cde、ad与be交于点o,ad与bc交于点p,be与cd交于点q,连结pq.以下五个结论:ad=be;pqae;ap=bq;de=dp;aob=60.恒成立的结论有_(把你认为正确的序号都填上)。4.如图,四边形abcd是平行四边形o是对角线ac的中点,过点o的直线ef分别交ab、dc于点e、f,与cb、ad的延长线分别交于点g、h(1)写出图中不全等的两个相似三角形(不要求证明);(2)除ab=cd,ad=bc,oa=oc这三对相等的线段外,图中还有多对相等的线段,请选出其中一对加以证明5.如图,在梯形abcd中,若ab/dc,ad=bc,对角线bd、ac把梯形分成了四个小三角形 (1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少(注意:全等看成相似的特例)?(2)请你任选一组相似三角形,并给出证明类型之三 策略开放型问题策略开放型也称为设计方案型,是指题目的条件和结论都已知或部分已知,需要探索解题方法或设计解题方案的一类试题;这种类型的开放性试题的处理方法一般需要模仿、类比、试验、创新和综合运用所学知识,建立合理的数学模型,从而使问题得以解决。策略开放性问题的解题方法一般不惟一或解题路径不明确,要求解题者不墨守成规,善于标新立异,积极发散思维,优化解题方案和过程。6.如图甲,在abc中,acb为锐角点d为射线bc上一动点,连接ad,以ad为一边且在ad的右侧作正方形adef解答下列问题:(1)如果ab=ac,bac=90当点d在线段bc上时(与点b不重合),如图乙,线段cf、bd之间的位置关系为 ,数量关系为 当点d在线段bc的延长线上时,如图丙,中的结论是否仍然成立,为什么?(2)如果abac,bac90,点d在线段bc上运动试探究:当abc满足一个什么条件时,cfbc(点c、f重合除外)?画出相应图形,并说明理由(画图不写作法)(3)若ac,bc=3,在(2)的条件下,设正方形adef的边de与线段cf相交于点p,求线段cp长的最大值类型之四 综合型问题 这类问题是指条件、结论、解题方法都不全或未知,而仅提供一种问题情境,需要我们补充条件,设计结论,并寻求解法的一类问题;它更具有开发性,能为我们提供宽松的思维环境,解这类题时,要求我们对课本知识特别熟悉并能灵活运用。7点a、b分别是两条平行线m、n上任意两点,在直线n上找一点c,使bc = kab,连结ac,在直线ac上任取一点e,作bef =abc,ef交直线m于点f如图1,当k = 1时,探究线段ef与eb的关系,并中以说明;说明:如果你经过反复探索没有解决问题,请写出探索过程(要求至少写三步);在完成之后,可以自己添加条件(添加的条件限定为abc为特殊角),在图2中补全图形,完成证明如图3,若abc = 90,k1,探究线段ef与eb的关系,并说明理由 参考答案1.【解析】由可知四边形abcd是矩形,再得到正方形方法有很多,比如邻边相等、对角线互相垂直等。答案不唯一。【答案】 ab=bc或者bc=cd或者cd=da或者da=ab2.【解析】由本题图形相似已经有一个公共角,再找一组对应角相等或公共角的两边对应成比例即可。【答案】 ,或,或3.【解析】由于a、c、e三点共线可证明三角形acd与三角形bce全等(边角边)从而可证ad=be、aob=cad+ceb=ccbe+ceb =acb= 60,再证三角形acp全等于三角形bcq,从而可证ap=bq,pqae。如果de=dp,那么就会有de=dp=eq(三角形ceq全等于三角形cdp)eq=ce因为dce=60,所以三角形ceq为等边三角形,矛盾。【答案】(1)(2)(3)(5)4.【解析】考察了相似的两种基本图形,平行四边形中利用全等三角形的简单证明.【答案】(1) aeh与dfh(或aeh与beg, 或beg与cfg ,或dfh与cfg)(2)oe=of证明:四边形abcd是平行四边形,cd, , 5.【答案】解:(1)任选两个三角形的所有可能情况如下六种情况:,其中有两组(,)是相似的选取到的二个三角形是相似三角形的概率是p (2)证明:选择、证明在aob与cod中,abcd,cdbdba,dcacab,aobcod 选择、证明.四边形abcd是等腰梯形, dabcab,在dab与cba中有ad=bc, dabcab,ab=ab,dab cba, adobco.又doacob, doacob 6.【答案】:(1)cf与bd位置关系是 垂直、数量关系是相等;当点d在bc的延长线上时的结论仍成立由正方形adef得 ad=af ,daf=90bac=90,daf=bac , dab=fac,又ab=ac ,dabfac , cf=bd acf=abdbac=90, ab=ac ,abc=45,acf=45,bcf=acb+acf= 90即 cfbd(2)画图正确当bca=45时,cfbd(如图丁)理由是:过点a作agac交bc于点g,ac=ag可证:gadcaf acf=agd=45 bcf=acb+acf= 90 即cfbd(3)当具备bca=45时,过点a作aqbc交bc的延长线于点q,(如图戊)de与cf交于点p时, 此时点d位于线段cq上,bca=45,可求出aq= cq=4设cd=x , dq=4x,容易说明aqddcp, , , 0x3 当x=2时,cp有最大值17.【答案】(1)ef=eb证明:如图,以e为圆心,以ea为半径画弧交直线m于点m,连结emem=ea, ema=eam bc=kab,k=1,bc=ab cab=acb mn,mac=acb, fab=abcmac=cab cab=ema bef=abc, bef=fabahf=ehb, afe=abeaebmefef=eb探索思路:如上图,bc=kab,k=1,bc=abcab=acb mn,mac=acb 添加条件:abc=90证明:如图,在直线m上截取am=ab,连结mebc=kab,k=1,bc=ababc=90, cab=acb=45,mn,mae=acb=cab=45, fab=90ae=ae, maeabe em=eb, ame=abebef=abc=90, fab+bef=180abe+efa=180
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏扬州人才集团下属企业招聘6人笔试备考试题及答案详解一套
- 2025江苏扬州宝应县“乡村振兴青年人才”招聘67人笔试备考题库及一套答案详解
- 2025邯郸武安市选聘农村党务(村务)工作者180名笔试备考试题及完整答案详解一套
- 2025年人教部编版语文四年级下册第三次月考测试题(配有答案)
- 2025年河南省南阳市桐柏县三模化学试题含答案
- 山西省吕梁市孝义市2024-2025学年高一上学期期中考试物理试题
- 江西省智慧上进2024-2025学年高一上学期1月期末联考物理试题(解析版)
- 陕西省安康市2023-2024学年高二下学期期末质量联考数学试卷(解析版)
- 慢性病管理与护理策略
- 妆前护肤 打造完美妆效的第一步
- 机电工程设备调试试题及答案
- 2025年《安全生产月》活动实施方案 (2份)-61
- 2025年北京市第一次普通高中学业水平合格性考试历史试题(含答案)
- 甘肃开放大学2024年《信息技术与信息管理》形考作业1-4答案
- 浙江省杭州市2024年中考英语真题(含答案)
- 2022年《数据结构(本)》形考任务实践活动3
- 生猪屠宰兽医卫生检验人员理论考试题库及答案
- 医学检验项目管理制度
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- 年产4亿片阿奇霉素片的精烘包及车间设计
- 阀腔零件工艺过程卡与工序卡
评论
0/150
提交评论